Contra *a* * **Continuous Functions in Topological Spaces**

S. Pious Missier¹, P. Anbarasi Rodrigo²

Abstract: In [3], Dontchev introduced and investigated a new notion of continuity called contracontinuity. Recently, Jafari and Noiri [5] introduced new generalization of contra-continuity called contra α continuity. The aim of this paper is to introduce and study the concept of a contra α * continuous and almost contra α * continuous functions are introduced

MATHEMATICS SUBJECT CLASSIFICATIONS: 54A05

Keywords And Phrases: contra α * continuous functions, almost contra α * continuous functions, contra α * graph, and locally α * indiscrete space.

I. Introduction

Dontchev[3] introduced the notion of contra continuity. Later Jafari and Noiri introduced and investigated the concept of contra α continuous and discussed its properties. Recently, S.Pious Missier and P. Anbarasi Rodrigo [9] have introduced the concept of α * -open sets and studied their properties. In this paper we introduce and investigate the contra α * continuous functions and almost contra α * continuous functions and discuss some of its properties.

II. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A)and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by P(X).

Definition 2.1: A subset A of a topological space X is said to be a α *open [9] if A \subseteq int* (cl (int* (A))). **Definition 2.2:** A function f: (X, τ) \rightarrow (Y, σ) is called a α * continuous [10] if f¹(O) is a α *open set of (X, τ) for every open set O of (Y, σ).

Definition 2.3: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *perfectly* $\alpha * continuous$ [11] if the inverse image of every α *open set in (Y, σ) is both open and closed in (X, τ) .

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be α **Irresolute* [10] if f¹(O) is a α *open in (X, τ) for every α *open set O in (Y, σ) .

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra g continuous* [2] if f⁻¹(O) is a *g* - *closed* set [6] of (X, τ) for every open set O of (Y, σ) .

Definition 2.6: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra continuous* [3]if f⁻¹(O) is a closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.7: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra* α *continuous* [5] if f⁻¹(O) is a α closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.8: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra semi continuous* [4] if f⁻¹(O) is a semi closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.9: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra g* α *continuous* [1] if f⁻¹(O) is a g α -closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.10: A Topological space X is said to be $\alpha * T_{1/2}$ space or $\alpha * space$ [9] if every $\alpha *$ open set of X is open in X.

Definition 2.11: A Topological space X is said to be a *locally indiscrete* [7] if each open subset of X is closed in X.

Definition 2.12: Let A be a subset of a topological space (X, τ) . The set $\cap \{U \in \tau \mid A \subset U\}$ is called the *Kernel* of A [7] and is denoted by ker(A).

Lemma 2.13: [6] The following properties hold for subsets A,B of a space X: 1. $x \in ker(A)$ if and only if $A \cap F \neq \phi$, for any $F \in C(X, x)$;

- 2. $A \subset ker(A)$ and A = ker(A) if A is open in X;
- 3. If $A \subset B$, then ker(A) \subset ker(B).

Theorem 2.14: [10] Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following are equivalent:

- 1. f is α * continuous
- 2. The inverse image of closed set in Y is α * closed in X.
- 3. $f(\alpha * cl(A)) \subseteq f(cl(A))$ for every subset A in X.
- 4. $\alpha * \operatorname{cl}(f^{1}(G)) \subseteq f^{1}(\operatorname{cl}(G))$ for every subset G of Y.
- 5. $f^{-1}(int(G)) \subseteq \alpha * int(f^{-1}(G))$ for every subset G of Y.

Theorem 2.15[9]:

- (i) Every open set is α *- open and every closed set is α *-closed set
- (ii) Every α -open set is α *-open and every α -closed set is α *-closed.
- (iii) Every g-open set is α *-open and every g-closed set is α *-closed.

III. Contra α * continuous functions

Definition 3.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called **Contra** α * **continuous functions** if f⁻¹ (O) is α * closed in (X, τ) for every open set O in (Y, σ) .

Example 3.2: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{ab\}, \{ab\}, \{x\}, \{ab\}, \{$

Theorem 3.3: Every contra continuous function is a contra α * continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. Let O be an open set in (Y, σ) . Since, f is contra continuous, then f⁻¹ (O) is closed in (X, τ) . Hence by thm [2.15], f⁻¹ (O) is α * closed in (X, τ) . Therefore, f is contra α * continuous.

Remark 3.4 : The converse of the above theorem need not be true.

Example 3.5: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{ab\}, \{abc\}, X\}, \tau^c = \{\phi, \{d\}, \{cd\}, \{bcd\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, Y\}$. $\alpha *C(X, \tau) = \{\phi, \{b\}, \{c\}, \{d\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a = f(d), f(b) = b, f(c) = d. clearly, f is contra $\alpha *$ continuous, but f⁻¹({a}) = {ad} is not closed in X.

Theorem 3.6: Every contra g continuous map is contra α * continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra g continuous map and O be any open set in Y. Since, f is contra g continuous, then f⁻¹ (O) is g - closed in (X, τ) . Hence by thm [2.15], f⁻¹ (O) is α * closed in (X, τ) . Therefore, f is contra α * continuous.

Remark 3.7: The converse of the above theorem need not be true.

Theorem 3.9: Every contra α continuous map is contra α * continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra α continuous map and O be any open set in Y. Since, f is contra α continuous, then f⁻¹ (O) is α - closed in (X, τ) . Hence by thm [2.15], f⁻¹ (O) is α * closed in (X, τ) . Therefore, f is contra α * continuous.

Remark 3.10: The converse of the above theorem need not be true.

Example 3.11: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, X\}, \text{ and } \sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, Y\}. \ \alpha * C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{cd\}, \{acd\}, \{acd\}, \{bcd\}, X\}. \ \alpha C(X, \tau) = \{\phi, \{c\}, \{d\}, \{acd\}, \{cd\}, \{acd\}, \{d\}, \{acd\}, \{d\}, \{acd\}, \{d\}, \{acd\}, \{d\}, \{acd\}, \{d\}, \{acd\}, \{cd\}, \{acd\}, \{bcd\}, X\}.$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(b) = a = f(d), f(c) = b, f(a) = d. clearly, f is contra α * continuous, but f¹ ($\{a\}$) = $\{bd\}$ is not α -closed in X.

Remark 3.12: The concept of contra semi continuous and contra α * continuous are independent.

Example 3.13: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{ab\}, \{abc\}, X\}, SC(X, \tau) = \{\phi, \{b\}, \{c\}, \{d\}, \{bc\}, \{bd\}, \{cd\}, \{bcd\}, X\} and \sigma = \{\phi, \{a\}, \{b, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, Y\}. \ \alpha *C(X, \tau) = \{\phi, \{b\}, \{c\}, \{d\}, \{ad\}, \{bc\}, \{bc\}, \{bd\}, \{cd\}, \{ad\}, \{acd\}, \{bcd\}, X\}. Let f: <math>(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a = f(d), f(b) = b, f(c) = d. clearly, f is contra α * continuous, but f¹ ($\{a\}$) = {ad} is not semi-closed in X.

Example 3.14: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\}, SC(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{ab\}, \{c\}, \{db\}, \{ac\}, \{ac\}, \{ac\}, \{ac\}, \{ac\}, \{ad\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, X\}$ and $\sigma = \{\phi, \{a\}, \{ab\}, \{ac\}, \{abc\}, Y\}$. $\alpha *C(X, \tau) = \{\phi, \{b\}, \{c\}, \{d\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{acd\}, \{bcd\}, \{bcd$

X }. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b, f(c) = d., f(d) = c. Clearly, f is semi closed, but $f^{1}(\{a\}) = \{a\}$ is not α *closed in X.

Remark 3.15: The concept of contra g α continuous and contra α * continuous are independent.

Example 3.16: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{x\}, x\}$, and $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, Y\}$. $\alpha *C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{cd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, X\}$. $X \}$. $g \alpha - Closed(X, \tau) = \{\phi, \{c\}, \{d\}, \{acd\}, \{acd\}, \{ad\}, \{cd\}, \{acd\}, \{bcd\}, x\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(b) = a = f(d), f(c) = b, f(a) = d. clearly, f is contra $\alpha *$ continuous, but $f^1(\{a\}) = \{bd\}$ is not $g \alpha$ -closed in X. Therefore, f is not contra $g \alpha$ continuous.

Example 3.17: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{abc\}, X\}, \text{ and } \sigma = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, Y\}. \quad \alpha * C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, X\}. \quad g \alpha - Closed(X, \tau) = \{\phi, \{c\}, \{d\}, \{ac\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{acd\}, \{bcd\}, X\}. \quad bed \in A_{1}, \{acd\}, \{$

Remark 3.18: The concept of α * continuous and contra α * continuous are independent.

Example 3.19: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, Y\}, \alpha *O(X,\tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\} \alpha *C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f (c) = a, f(a) = f(b) = b, f(d) = c, clearly, f is α * continuous but f is not contra α * - continuous because f¹ ($\{b\}$) = $\{ab\}$ is not α * - closed.

Example 3.20: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{Abc\}, X\}$, and $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, Y\}$. $\alpha * C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{dd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, X\}$. $\alpha * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(b) = a = f(d), f(c) = b, f(a) = d. clearly, f is contra $\alpha *$ continuous, but f¹ ($\{a\}$) = $\{bd\}$ is not $\alpha *$ - open in X. Therefore, f is not $\alpha *$ continuous.

Remark 3.21: The composition of two contra α * continuous need not be contra α * continuous.

Example 3.22: Consider X = Y = Z = {a, b, c}, $\tau = \{\phi, \{a\}, \{ab\}, \{ac\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, Y\}, \eta = \{\phi, \{a\}, \{ab\}, Z\}, \alpha * C(X, \tau) = \{\phi, \{b\}, \{c\}, \{bc\}, X\}, \alpha * C(Y, \sigma) = \{\phi, \{b\}, \{c\}, \{ac\}, \{bc\}, Y\}.$ Let f: (X, τ) \rightarrow (Y, σ) be defined by f(b) = a, f(c) = b, f(a) = c. Clearly, f is contra α *continuous. Consider the map g: Y \rightarrow Z defined g(b) = a, g(c) = b, g(b) = c, clearly g is contra α *continuous. But g of : X \rightarrow Z is not a contra α *continuous, (g of) ⁻¹ ({ab}) = f⁻¹ (g⁻¹ {ab}) = f⁻¹ (bc) = ac which is not a α *closed in X. **Theorem 3.23:** Let f: (X, τ) \rightarrow (Y, σ) be a map. The following are equivalent.

- 1. f is contra α * continuous.
- 2. The inverse image of a closed set F of Y is α * open in X

Proof: let F be a closed set in Y. Then Y\F is an open set in Y. By the assumption of (1), $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is α * closed in X. It implies that $f^{-1}(F)$ is α * open in X. Converse is similar.

Theorem 3.24: The following are equivalent for a function f: $(X, \tau) \rightarrow (Y, \sigma)$. Assume that $\alpha * O(X, \tau)$ (resp $\alpha * C(X, \tau)$) is closed under any union (resp; intersection).

- 1. f is contra α * continuous.
- 2. The inverse image of a closed set F of Y is α * open in X
- 3. For each $x \in X$ and each closed set B in Y with $f(x) \in B$, there exists an α * open set A in X such that $x \in A$ and $f(A) \subset B$
- 4. $f(\alpha * cl(A)) \subset ker(f(A))$ for every subset A of X.
- 5. $\alpha * cl (f^{-1}(B)) \subset f^{-1} (ker B)$ for every subset B of Y.

Proof:

(1) \Rightarrow (3) Let $x \in X$ and B be a closed set in Y with $f(x) \in B$. By (1), it follows that $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ is α * closed and so $f^{-1}(B)$ is α * open. Take $A = f^{-1}(B)$. We obtain that $x \in A$ and $f(A) \subset B$.

(3) \Rightarrow (2) Let B be a closed set in Y with $x \in f^{-1}$ (B). Since, $f(x) \in B$, by (3), there exist an α * open set A in X containing x such that $f(A) \subset B$. It follows that $x \in A \subset f^{-1}$ (B). Hence, f^{-1} (B) is α * open.

(2) \Rightarrow (1) Follows from the previous theorem

(2) \Rightarrow (4) Let A be any subset of X. Let $y \notin \text{ker}(f(A))$. Then there exists a closed set F containing y such that $f(A) \cap F = \phi$. Hence, we have $A \cap f^{-1}(F) = \phi$ and $\alpha * \text{cl}(A) \cap f^{-1}(F) = \phi$. Hence, we obtain $f(\alpha * \text{cl}(A)) \cap F = \phi$ and $y \notin f(\alpha * \text{cl}(A))$. Thus, $f(\alpha * \text{cl}(A)) \subset \text{ker}(f(A))$.

(4) \Rightarrow (5) Let B be any subset of Y. By (4) and lemma [2.13] f(α *cl (f⁻¹ (B))) \subset (ker B) and α *cl (f⁻¹ (B)) \subset f⁻¹ (ker B)

(5) \Rightarrow (1) Let B be any open set in Y. By (5) and lemma [2.13] α *cl (f⁻¹ (B)) \subset f⁻¹ (ker B) = f⁻¹ (B) and α *cl (f⁻¹ (B)) = f⁻¹ (B). We obtain that f⁻¹ (B) is α * closed in X.

Theorem 3.25: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is α *irresolute and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is contra α * continuous, then their composition g \circ f: $(X, \tau) \rightarrow (Z, \eta)$ is contra α * continuous.

Proof: Let O be any open set in (Z, η). Since, g is contra α * continuous, then $g^{-1}(O)$ is α * closed in (Y, σ) and since f is α *irresolute, then f⁻¹(g⁻¹(O)) is α * closed in (X, τ). Therefore, g \circ f is contra α * continuous.

Theorem 3.26: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra α * continuous g: $(Y, \sigma) \rightarrow (Z, \eta)$ is continuous, then their composition g \circ f: $(X, \tau) \rightarrow (Z, \eta)$ is contra α * continuous.

Proof: Let O be any open set in (Z, η). Since, g is continuous, then $g^{-1}(O)$ is open in (Y, σ) and since f is contra α * continuous, then $f^{-1}(g^{-1}(O))$ is α * closed in (X, τ). Therefore, $g \circ f$ is contra α * continuous.

Theorem 3.27: If f: $(X, \tau) \to (Y, \sigma)$ is contra α continuous g: $(Y, \sigma) \to (Z, \eta)$ is continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α * continuous.

Proof: Let O be any open set in (Z, η) . Since, g is continuous, then $g^{-1}(O)$ is open in (Y, σ) and since f is contra α continuous, then $f^{-1}(g^{-1}(O))$ is α closed in (X, τ) . Hence by thm [2.15], every α closed set is $\alpha *$ closed. We have $f^{-1}(g^{-1}(O))$ is $\alpha *$ closed in (X, τ) . Therefore, $g \circ f$ is contra $\alpha *$ continuous.

Theorem 3.28: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra α * continuous g: $(Y, \sigma) \rightarrow (Z, \eta)$ is g-continuous, then their composition g \circ f: $(X, \tau) \rightarrow (Z, \eta)$ is contra α * continuous.

Proof: Let O be any open set in (Z, η) . Since, g is g- continuous, then $g^{-1}(O)$ is g- open in (Y, σ) and since f is contra α * continuous, then $f^{-1}(g^{-1}(O))$ is α * closed in (X, τ) . Therefore, $g \circ f$ is contra α * continuous.

Theorem 3.29: If f: $(X, \tau) \to (Y, \sigma)$ is strongly $\alpha *$ continuous and g: $(Y, \sigma) \to (Z, \eta)$ is contra $\alpha *$ continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra continuous.

Proof: Let O any open set in (Z, η). Since, g is contra α * continuous, then g⁻¹(O) is α * closed in (Y, σ) and since f is strongly α * continuous, f⁻¹(g⁻¹(O)) is closed in (X, τ). Therefore, g \circ f is contra continuous.

Theorem 3.30: If f: $(X, \tau) \to (Y, \sigma)$ is perfectly $\alpha *$ continuous, and g: $(Y, \sigma) \to (Z, \eta)$ is contra $\alpha *$ continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is .

Proof: Let O any open set in (Z, η) . By thm [2.15] every open set is α * open set which implies O is α * open in (Z, η) . Since, g is contra α * continuous, then $g^{-1}(O)$ is α * closed in (Y, σ) and since f is perfectly α * continuous, then $f^{-1}(g^{-1}(O))$ is both open and closed in X, which implies $(g \circ f)^{-1}(O)$ is both open and closed in X. Therefore, $g \circ f$ is perfectly α * continuous.

Theorem 3.31: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is surjective α *irresolute and α * open and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any function. Then $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is contra α * continuous if and only if g is contra α * continuous.

Proof: The if part is easy to prove. To prove the only if part, let F be any closed set in (Z, η). Since $g \circ f$ is contra α * continuous, then $f^{-1}(g^{-1}(F))$ is α * open in (X, τ) and since f is α * open surjection, then $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is α * open in (Y, σ). Therefore, g is contra α * continuous.

Theorem 3.32: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function and X a $\alpha * T_{1/2}$ space. Then the following are equivalent:

- 1. f is contra continuous
- 2. f is contra α * continuous
- **Proof:**

(1) \Rightarrow (2) Let O be any open set in (Y, σ). Since f is contra continuous, f⁻¹ (O) is closed in (X, τ) and since Every closed set is α *closed, f⁻¹ (O) is α *closed in (X, τ). Therefore, f is contra α * continuous.

(2) \Rightarrow (1) Let O be any open set in (Y, σ). Since, f is contra α * continuous, f⁻¹ (O) is α *closed in (X, τ) and since X is α * T_{1/2} space, f⁻¹ (O) is closed in (X, τ). Therefore, f is contra continuous.

Theorem 3.33: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra α * continuous and (Y, σ) is regular, then f is α *continuous.

Proof: Let x be an arbitrary point of X and O be any open set of Y containing f(x). Since Y is regular, there exists an open set U in Y containing f(x) such that $cl(U) \subset O$. Since, f is contra α * continuous, so by thm[3.24], there exists $N \in \alpha$ *O (X, τ), such that $f(N) \subset cl(U)$. Then, $f(N) \subset O$. Hence by thm[2.14], f is α *continuous.

Theorem 3.34: If f is α *continuous and if Y is locally indiscrete, then f is contra α *continuous.

| IJMER | ISSN: 2249–6645 |

Proof: Let O be an open set of Y. Since Y is locally discrete, O is closed. Since, f is α *continuous, f⁻¹(O) is α * closed in X. Therefore, f is contra α *continuous.

Theorem 3.35: If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is continuous and X is a locally indiscrete space, then f is contra α *continuous.

Proof: Let O be any open set in (Y, σ) . Since f is continuous f⁻¹ (O) is open in X. and since X is locally discrete, f⁻¹ (O) is closed in X. Every closed set is α * closed. f⁻¹ (O) is α * closed in X. Therefore, f is contra α * continuous

Theorem 3.36: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function and g: $X \rightarrow X \times Y$ the graph function, given by g(x) = (x, f(x)) for every $x \in X$. Then f is contra α * continuous if g is contra α * continuous.

Proof: Let F be a closed subset of Y. Then $X \times F$ is a closed subset of $X \times Y$. Since g is a contra α^* continuous, then $g^{-1}(X \times F)$ is a α^* open subset of X. Also, $g^{-1}(X \times F) = f^{-1}(F)$. Hence, f is contra α^* continuous.

Theorem 3.37: Let $\{X_i | i \in I\}$ be any family of topological spaces. If $f: X \to \Pi X_i$ is a contra α * continuous function, then $\pi_i \circ f: X \to X_i$ is contra α * continuous for each $i \in I$, where π_i is the projection of ΠX_i onto X_i .

Proof: Suppose U_i is an arbitrary open sets in X_i for $i \in I$. Then $\pi_i^{-1}(U_i)$ is open in ΠX_i . Since f is contra $\alpha *$ continuous, $f^{-1}(\pi_i^{-1}(U_i)) = (\pi_i \circ f)^{-1}(U_i)$ is $\alpha *$ closed in X. Therefore, $\pi_i \circ f$ is contra $\alpha *$ continuous.

For a map f: $(X, \tau) \rightarrow (Y, \sigma)$, the subset {(x, f(x)): $x \in X$ } $\subset X \times Y$ is called the graph of f and is denoted by G(f).

IV. Contra α * closed graph

Definition 4.1: The graph G(f) of a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *Contra* $\alpha * closed graph$ in X × Y if for each $(x,y) \in (X \times Y)$ - G(f) there exists $U \in \alpha * O(X, \tau)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \phi$.

Lemma 4.2: The graph G(f) of a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is $\alpha *$ closed in $(X \times Y)$ if and only if for each $(x,y) \in (X \times Y) - G(f)$, there exists an $U \in \alpha * O(X, x)$ and an open set V in Y containing y such that $f(U) \cap V = \varphi$.

Proof: We shall prove that $f(U) \cap V = \phi \iff (U \times V) \cap G(f) = \phi$. Let $(U \times V) \cap G(f) \neq \phi$. Then there exists $(x,y) \in (X \times Y)$ and $(x,y) \in G(f)$. This implies that $x \in U$, $y \in V$ and $y = f(x) \in V$. Therefore, $f(U) \cap V \neq \phi$. Hence the result follows.

Theorem 4.3: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra α * continuous and Y is Urysohn, G(f) is a contra α * closed graph in $X \times Y$.

Proof: Let $(x,y) \in (X \times Y) - G(f)$, then $y \neq f(x)$ and there exist open sets A and B such that $f(x) \in A$, $y \in B$ and $cl(A) \cap cl(B) = \phi$. Since f is contra α * continuous, there exist $O \in \alpha$ *O (X, x) such that $f(O) \subset cl(A)$. Therefore, we obtain $f(O) \cap cl(B) = \phi$. Hence by lemma [4.2], G(f) is contra α * closed graph in X × Y.

Theorem 4.4: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is α * continuous and Y is T₁, then G(f) is Contra α * closed graph in X \times Y.

Proof: Let $(x,y) \in (X \times Y)$ - G(f), then $y \neq f(x)$ and since Y is T₁ there exists open set V of Y, such that $f(x) \in V$, $y \notin V$. Since f is α * continuous, there exist α * open set U of X containing x such that $f(U) \subset V$. Therefore, $f(U) \cap (Y - V) = \phi$ and Y - V is a closed set in Y containing y. Hence by lemma [4.2], G(f) is Contra α * closed graph in X × Y.

Definition 4.5 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called *almost contra* $\alpha * continuous$ if f⁻¹(O) is α *closed set in X for every regular open set O in Y.

Theorem 4.6Every contra α *continuous function is almost contra α *continuous.

Proof: Let O be a regular open set in Y. Since, every regular open set is open which implies O is open in Y. Since $f: (X, \tau) \to (Y, \sigma)$ is contra α *continuous then $f^{-1}(O)$ is α * closed in X. Therefore, f is almost contra α *continuous.

Remark 4.7: The converse of the above theorem need not be true.

Example 4.8: Let $X = Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, Y\}$. RO $(Y, \sigma) = \{\phi, \{a\}, \{b\}, Y\}$, $\alpha * C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{bc\}, \{ac\}, X\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b = f(c). clearly, f(a) = c continuous, but $f^{-1}(\{b\}) = \{bc\}$ is not regular open in X. Therefore, f is not almost contra $\alpha *$ continuous.

Theorem 4.9: The following are equivalent for a function f: $(X, \tau) \rightarrow (Y, \sigma)$

- 1. f is almost contra α *continuous.
- 2. $f^{-1}(F)$ is α *open in X for every regular closed set F in Y.

- 3. for each $x \in X$ and each regular open set F of Y containing f(x), there exists $U \in \alpha *O(X,x)$ such that $f(U) \subset F$
- 4. for each $x \in X$ and each regular open set V of Y non containing f(x), there exists an α * closed set K of X non containing x such that $f^{-1}(V) \subset K$

Proof:

- (1) \Leftrightarrow (2) Let F be any regular closed set of Y. Then (Y F) is regular open and therefore $f^{-1}(Y F) = X f^{-1}(F) \in \alpha * C(X)$. Hence, $f^{-1}(F)$ is $\alpha *$ open in X. The converse part is obvious.
- (2) \Rightarrow (3) Let F be any regular closed set of Y containing f(x). Then f⁻¹(F) is α * open in X and x \in f⁻¹(F). Taking U = f⁻¹(F) we get f(U) \subset F.
- (3) \Rightarrow (2) Let F be any regular closed set of Y and $x \in f^{-1}(F)$. Then there exists $U_x \in \alpha * O(X,x)$ such that $f(U_x) \subset F$ and so $U_x \subset f^{-1}(F)$. Also, we have $f^{-1}(F) \subset \bigcup_{x \in f^{-1}(F)} U_x$. Hence, $f^{-1}(F)$ is $\alpha *$ open in X.
- (3) \Leftrightarrow (4) Let V be any regular open set of Y non containing f(x). Then (Y V) is regular closed set in Y containing f(x). Hence by (c), there exists U $\in \alpha * O(X,x)$ such that f(U) $\subset (Y V)$. Hence, U $\subset f^{-1}(Y V) \subset X f^{-1}(V)$ and so $f^{-1}(V) \subset (X U)$. Now, since U $\in \alpha * O(X)$, (X-U) is $\alpha *$ closed set of X not containing x. The converse part is obvious.

Definition 4.7: A space X is said to be *locally* $\alpha * indiscrete$ if every α *open set of X is closed in X.

Theorem 4.8: A contra α *continuous function $f : (X, \tau) \rightarrow (Y, \sigma)$ is continuous when X is locally α * indiscrete.

Proof: Let O be an open set in Y. Since, f is contra α *continuous then f⁻¹ (O) is α * closed in X. Since, X is locally α * indiscrete which implies f⁻¹ (O) is open in X. Therefore, f is continuous.

Theorem 4.9: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is α *irresolute map with Y as locally α * indiscrete space and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is contra α *continuous, then $g \circ f$ is α *continuous.

Proof: Let B be any closed set in Z. Since g is contra α *continuous, g⁻¹ (B) is α * open in Y. But Y is locally α * indiscrete, g⁻¹ (B) is closed in Y. Hence, g⁻¹ (B) is α *closed in Y. Since, f is α *irresolute, f⁻¹(g⁻¹ (B)) = (g \circ f)⁻¹ (B) is α *closed in X. Therefore, g \circ f is α *continuous.

Definition 4.10: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be *pre* α **open* if the image of every α *open set of X is α *open in Y.

Theorem 4.11: Let $f: (X, \tau) \to (Y, \sigma)$ be surjective α * irresolute pre α *open and g: $(Y, \sigma) \to (Z, \eta)$ be any map. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α *continuous if and only if g is contra α *continuous.

Proof: The if part is easy to prove. To prove the "only if " part , let $g \circ f: (X, \tau) \to (Z, \eta)$ be contra α *continuous and let B be a closed subset of Z. Then $(g \circ f)^{-1}$ (B) is α *open in X which implies $f^{-1}(g^{-1}(B))$ is α *open in X. Since, f is pre α *open, $f(f^{-1}(g^{-1}(B)))$ is α *open of X. So, $g^{-1}(B) \alpha$ *open in Y. Therefore, g is contra α *continuous.

REFERENCE

- K.Alli, Contra g#p-Continuous Functions, International Journal of Mathematics Trends and Technology- Volume 4 Issue 11- Dec 2013
- M. Caldas, S. Jafari, T. Noiri, M. Simeos, A new generalization of contra-continuity via Levines g-closed sets, Chaos Solitons Fractals 42 (2007), 1595–1603.
- [3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19 (1996), 303–310.
- [5] J. Dontchev, T. Noiri, Contra-semicontinuous functions, Math. Pannon. 10 (1999),159–168.
- [6] S. Jafari, T. Noiri, Contra *α* continuous functions between topological spaces, Iran.Int. J. Sci. 2 (2001), 153–167.
- [7] S. Jafari, T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest 42(1999), 27–34.
- [8] M. Mrsevic, On pairwise R0 and pairwise R1 bitopological spaces, Bull. Math. Soc.Sci. Math. R.S. Roumanie 30(78) (1986), 141–148.
- [9] Pious Missier .S and P.Anbarasi Rodrigo, Some Notions of nearly open sets in Topological Spaces, International Journal of Mathematical Archive 4(12), 2013, 1-7
- [10] Pious Missier .S and P.Anbarasi Rodrigo, On α *-Continuous, Outreach Multi Displinary Research Journal (Accepted)
- [11] Pious Missier .S and P.Anbarasi Rodrigo, **Strongly** α *-**Continuous functions in topological spaces,** International Organization of Scientific Research