Contra * Continuous Functions in Topological Spaces

S. Pious Missier¹, P. Anbarasi Rodrigo²

Abstract: In [3], Dontchev introduced and investigated a new notion of continuity called contracontinuity. Recently, Jafari and Noiri [5] introduced new generalization of contra-continuity called contra α *continuity. The aim of this paper is to introduce and study the concept of a contra* α ^{*} $continuous$ and almost contra α $*$ continuous functions are introduced

MATHEMATICS SUBJECT CLASSIFICATIONS: 54AO5

Keywords And Phrases: contra α ** continuous functions, almost contra* α ** continuous functions, contra* α ^{*} graph, and locally α ^{*} indiscrete space.

I. Introduction

Dontchev[3] introduced the notion of contra continuity. Later Jafari and Noiri introduced and investigated the concept of contra α continuous and discussed its properties. Recently, S.Pious Missier and P. Anbarasi Rodrigo [9] have introduced the concept of α * -open sets and studied their properties. In this paper we introduce and investigate the contra α * continuous functions and almost contra α * continuous functions and discuss some of its properties.

II. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , $cl(A)$ and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by $P(X)$.

Definition 2.1: A subset A of a topological space X is said to be a α *open [9] if $A \subseteq int^*$ (cl (int* (A))). **Definition 2.2:** A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a α * *continuous* [10] if $f^1(0)$ is a α * open set of (X, τ) τ) for every open set O of (Y, σ).

Definition 2.3: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *perfectly* α ** continuous* [11] if the inverse image of every α *open set in (Y, σ) is both open and closed in (X, τ) .

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be α ***Irresolute** [10] if $f^1(0)$ is a α *open in (X, τ) for every α *open set O in (Y, σ) .

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra g continuous* [2] if $f^{-1}(O)$ is a g-*closed* set [6] of (X, τ) for every open set O of (Y, σ) .

Definition 2.6: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra continuous* [3] if $f^{-1}(O)$ is a closed set of (X, τ) τ) for every open set O of (Y, σ).

Definition 2.7: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a *contra* α *continuous* [5] if $f^{-1}(O)$ is a α closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.8: A function f: $(X, \tau) \to (Y, \sigma)$ is called a *contra semi continuous* [4] if $f^{-1}(O)$ is a semi closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.9: A function f: $(X, \tau) \to (Y, \sigma)$ is called a *contra g* α *continuous* [1] if $f^{-1}(O)$ is a g α -closed set of (X, τ) for every open set O of (Y, σ) .

Definition 2.10: A Topological space X is said to be $\alpha *T_{1/2}$ space or $\alpha *$ space [9] if every $\alpha *$ open set of X is open in X.

Definition 2.11: A Topological space X is said to be a *locally indiscrete* [7] if each open subset of X is closed in X.

Definition 2.12: Let A be a subset of a topological space (X, τ) . The set $\cap \{U \in \tau \mid A \subset U\}$ is called the *Kernel of A* [7] and is denoted by ker(A).

Lemma 2.13: [6] The following properties hold for subsets A,B of a space X: 1. x ∈ ker(A) if and only if A \cap F $\neq \phi$, for any F ∈ C(X, x);

- 2. $A \subset \text{ker}(A)$ and $A = \text{ker}(A)$ if A is open in X;
- 3. If $A \subset B$, then ker(A) \subset ker(B).

Theorem 2.14: [10] Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following are equivalent:

- 1. f is α * continuous
- 2. The inverse image of closed set in Y is α * closed in X.
- 3. $f(\alpha * cl(A)) \subseteq f(cl(A))$ for every subset A in X.
- 4. $\alpha * cl(f^1(G)) \subseteq f^1(cl(G))$ for every subset G of Y.
- 5. f^1 (int (G)) $\subseteq \alpha$ * int (f^1 (G)) for every subset G of Y.

Theorem 2.15[9]**:**

- (i) Every open set is α *- open and every closed set is α *-closed set
- (ii) Every α -open set is α *-open and every α -closed set is α *-closed.
- (iii) Every g-open set is α *-open and every g-closed set is α *-closed.

III. Contra α * continuous functions

Definition 3.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called **Contra** α^* **continuous functions** if $f^{-1}(0)$ is α^* closed in (X, τ) for every open set O in (Y, σ) .

Example 3.2: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, X\}$ {a},{ab},{abc},Y}. $\alpha * C(X, \tau) = {\phi, \{d\}, \{ad\}, \{bd\}, \{acd\}, \{abd\}, \{acd\}, \{bcd\}, X\}$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(b) = a = f(d)$, $f(c) = b$, $f(a) = c$. clearly, f is contra $\alpha *$ continuous.

Theorem 3.3: Every contra continuous function is a contra α $*$ continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. Let O be an open set in (Y, σ) . Since, f is contra continuous, then f⁻¹ (O) is closed in (X, τ) . Hence by thm [2.15], f⁻¹ (O) is α ^{*} closed in (X, τ) . Therefore, f is contra α ^{*} continuous.

Remark 3.4 : The converse of the above theorem need not be true.

Example 3.5: : Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{abc\}$, $X\}$, $\tau^c = \{\phi, \{d\}, \{cd\}, \{bcd\}, X\}$ and $\sigma = \{\phi, \{cd\}, \{cd\}, \{cd\}, \{cd\}, \{cd\}$ {a},{b},{c},{ab},{ac},{bc},{abc},}. $\alpha * C(X, \tau) = {\phi, \{b\}, \{c\}, \{dd\}, \{bc\}, \{bd\}, \{cd\}, \{cd\}, \{abd\}}$ {acd}, {bcd}, X }. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = a = f(d)$, $f(b) = b$, $f(c) = d$. clearly, f is contra α^* * continuous, but $f^{-1}(\{a\}) = \{ad\}$ is not closed in X.

Theorem 3.6: Every contra g continuous map is contra α $*$ continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra g continuous map and O be any open set in Y. Since, f is contra g continuous, then f⁻¹ (O) is g - closed in (X, τ) . Hence by thm [2.15], f⁻¹ (O) is α ^{*} closed in (X, τ) . Therefore, f is contra α * continuous.

Remark 3.7: The converse of the above theorem need not be true.

Example 3.8: : Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{ab\}, \{abc\}, X\}, g\text{-closed } (X, \tau) = \{\phi, \{d\}, \{ad\}, \{bd\}$ {cd}, {abd}, {acd}, {acd}, X} and $\sigma = \{\phi, \{a\},\{b\},\{c\},\{ab\},\{ac\},\{bc\},\{abc\},Y\}$. $\alpha * C(X, \tau) = \{\phi, \{b\},\{\phi, \{a\},\{b\},\{c\},\{a\},\{a\},\{bc\},\{abc\}\}$ $\{c\}$, $\{d\}$, $\{ad\}$, $\{bc\}$, $\{bd\}$, $\{cd\}$, $\{abd\}$, $\{acd\}$, $\{bcd\}$, X }. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = a$ $= f(d)$, $f(b) = b$, $f(c) = d$. clearly, f is contra $\alpha *$ continuous, but $f'(\{b\}) = \{b\}$ is not g-closed in X.

Theorem 3.9: Every contra α continuous map is contra α * continuous.

Proof: Let f: $(X, \tau) \to (Y, \sigma)$ be a contra α continuous map and O be any open set in Y. Since, f is contra α continuous, then $f^{-1}(0)$ is α - closed in (X, τ) . Hence by thm [2.15], $f^{-1}(0)$ is α^* closed in (X, τ) . Therefore, f is contra α $*$ continuous.

Remark 3.10: The converse of the above theorem need not be true.

Example 3.11: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}$, $\{abc\}$, $X\}$, and $\sigma = \{\phi, \{a\}, \{a\}, \{b\}, \{ab\}\}$ {a},{b},{c},{ab},{ac},{bc},{abc},{bc},{abc},}?. $\alpha * C(X, \tau) = {\phi, \{c\}, \{d\}, \{ad\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, \{bcd\}}$ X }. $\alpha C(X, \tau) = \{\phi, \{c\}, \{d\}, \{ad\}, \{cd\}, \{acd\}, \{bcd\}, X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(b) = a $= f(d)$, $f(c) = b$, $f(a) = d$. clearly, f is contra $\alpha *$ continuous, but $f'(\{a\}) = \{ bd \}$ is not α -closed in X.

Remark 3.12: The concept of contra semi continuous and contra α $*$ continuous are independent.

Example 3.13: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{abc\}, X\}$, $SC(X, \tau) = \{\phi, \{b\}, \{c\}, \{d\}, \{bc\}, \{bd\}$ {cd}, {bcd},X} and $\sigma = {\phi, {a}, {b}, {c}, {ab}, {ac}, {bc}, {abc}, Y}.$ $\alpha *C(X, \tau) = {\phi, {b}, {c}, {d}, {ad}$ $,$ {bc}, {bd}, {cd}, {abd}, {acd}, {bcd}, X }. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = a = f(d)$, $f(b) = b$, $f(c) = d$. clearly, f is contra α * continuous, but $f'(\{a\}) = \{ad\}$ is not semi-closed in X.

Example 3.14: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}$, $\{c\}$, $\{ab\}$, $\{ac\}$, $\{bc\}$, $\{abc\}$, $X\}$, $SC(X, \tau) = \{\phi, \{a\}$, {b} , {c} , {ab} , {bc} , {ac} , {ad} , {bd} {cd}, {abd} , {acd}, {bcd}, X} and $\sigma = {\phi}$, {a},{ab},{ac},{abc},Y}. $\alpha * C(X, \tau) = \{\phi, \{\phi\}, \{\phi\}, \{\phi\}, \{\phi\}, \{\phi\}, \{\phi\}, \{\phi\}, \{\phi\}\}, \{\phi\}$, {abd}, {acd}, {bcd}, {bcd} , X }. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = a$, $f(b) = b$, $f(c) = d$, $f(d) = c$. Clearly, f is semi closed, but $f'(\{a\}) = \{a\}$ is not α * closed in X.

Remark 3.15: The concept of contra $g \alpha$ continuous and contra α * continuous are independent.

Example 3.16: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}$, $\{abc\}$, $X\}$, and $\sigma = \{\phi, \phi\}$. {a},{b},{c},{ab},{ac},{bc},{abc},Y}. $\alpha * C(X, \tau) = \{\phi, \{c\}, \{ad\}, \{ad\}, \{cd\}, \{ad\}, \{ad\}, \{ad\}, \{acd\}, \{acd\}, \{bcd\}$, X }. $g\alpha$ - Closed(X, τ) = { ϕ , {c}, {d}, {ad}, {cd}, {acd}, {bcd}, X}.Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(b) = a = f(d)$, $f(c) = b$, $f(a) = d$. clearly, f is contra α * continuous, but $f'(\{a\}) = \{bd\}$ is not $g\alpha$ -closed in X. Therefore, f is not contra $g\alpha$ continuous.

Example 3.17: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{abc\}, X\}, \text{ and } \sigma = \{\phi, \{a\}, \{a\}, \{a\}\}$ {a},{b},{ab},{bc},{abc},Y}. $\alpha * C(X, \tau) = \{\phi, \{c\}, \{ad\}, \{bd\}, \{cd\}, \{abd\}, \{acd\}, \{bcd\}, \{bcd\}, X\}$. g α -Closed(X, τ) = { ϕ , {c}, {d}, {ac}, {ad}, {bc}, {bd}, {cd}, {acd}, {bcd}, X}.Let f: (X, τ) \rightarrow (Y, σ) be defined by $f(a) = a = f(c)$, $f(d) = b$, $f(b) = d$. clearly, f is contra $g \alpha$ continuous, but $f^{-1}(\{a\}) = \{ac\}$ is not α *- closed in X. Therefore, f is not contra α * continuous.

Remark 3.18: The concept of α * continuous and contra α * continuous are independent.

Example 3.19: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{abc\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}$ {ab}, {bc}, {abc}, {bc}, {c} , {c} , {ab} , {c} , {abc} , {abc} , {abd} , X} $\alpha * C(X, \tau) = \{$ Φ , $\{c\}$, $\{d\}$, $\{ad\}$, $\{bd\}$, $\{cd\}$, $\{abd\}$, $\{acd\}$, $\{bcd\}$, $X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map defined by $f(c) =$ a, $f(a) = f(b) = b, f(d) = c$, clearly, f is $\alpha *$ continuous but f is not contra $\alpha *$ - continuous because $f'(\{b\}) = f(c)$ {ab} is not α * - closed.

Example 3.20: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{ab\}, \{bc\}, \{abc\}, X\}$, and $\sigma = \{\phi, \phi\}$ {a},{b},{c},{ab},{ac},{bc},{abc},Y}. $\alpha * C(X, \tau) = \{\phi, \{c\}, \{ad\}, \{ad\}, \{cd\}, \{ad\}, \{ad\}, \{ad\}, \{acd\}, \{acd\}, \{bcd\}$, X }. $\alpha * O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}, \{abd\}, X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(b) = a = f(d)$, $f(c) = b$, $f(a) = d$. clearly, f is contra $\alpha *$ continuous, but $f'(\{a\}) = \{bd\}$ is not α *- open in X. Therefore, f is not α * continuous.

Remark 3.21: The composition of two contra α * continuous need not be contra α * continuous.

Example 3.22: Consider $X = Y = Z = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{ab\}, \{ac\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}\}$ $\mathcal{L}_{\mathcal{A}}\{ab\},Y\},\eta=\{\phi,\{a\},\{ab\},Z\},\alpha * C(X,\tau) = \{\phi,\{b\},\{c\},\{bc\},X\},\alpha * C(Y,\sigma) = \{\phi,\{b\},\{c\},\{ac\},\{bc\},Y\}.$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(b) = a$, $f(c) = b$, $f(a) = c$. Clearly, f is contra α *continuous. Consider the map g: Y \rightarrow Z defined g(b) = a, g(c) = b, g(b) = c, clearly g is contra α *continuous. But g ∘f : X \rightarrow Z is not a contra α *continuous, $(g \circ f)^{-1} (\{ab\}) = f^{-1} (g^{-1} \{ab\}) = f^{-1} (bc) = ac$ which is not a α *closed in X. **Theorem 3.23:** Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. The following are equivalent.

- **1.** f is contra α * continuous.
- **2.** The inverse image of a closed set F of Y is α * open in X

Proof: let F be a closed set in Y. Then Y\F is an open set in Y. By the assumption of (1), $f^{-1}(Y \ F) = X \ f^{-1}(F)$ is α * closed in X. It implies that f⁻¹ (F) is α * open in X. Converse is similar.

Theorem 3.24: The following are equivalent for a function f: $(X, \tau) \rightarrow (Y, \sigma)$. Assume that $\alpha * O(X, \tau)$ (resp α *C (X, τ)) is closed under any union (resp; intersection).

- **1.** f is contra α * continuous.
- **2.** The inverse image of a closed set F of Y is α * open in X
- **3.** For each $x \in X$ and each closed set B in Y with $f(x) \in B$, there exists an α^* open set A in X such that $x \in A$ and $f(A) \subset B$
- **4.** $f(\alpha * cl(A)) \subset \text{ker } (f(A))$ for every subset A of X.
- **5.** α *cl (f⁻¹ (B)) \subset f⁻¹ (ker B) for every subset B of Y.

Proof:

(1) \Rightarrow (3) Let $x \in X$ and B be a closed set in Y with $f(x) \in B$. By (1), it follows that $f^{-1}(Y|B) = X\backslash f^{-1}(B)$ is α ^{*} closed and so f⁻¹ (B) is α ^{*} open. Take A = f⁻¹ (B). We obtain that $x \in A$ and f(A) $\subset B$.

(3) \Rightarrow (2) Let B be a closed set in Y with $x \in f^{-1}(B)$. Since, $f(x) \in B$, by (3), there exist an α ^{*} open set A in X containing x such that $f(A) \subset B$. It follows that $x \in A \subset f^{-1}(B)$. Hence, $f^{-1}(B)$ is $\alpha *$ open.

 $(2) \implies (1)$ Follows from the previous theorem

(2) \Rightarrow (4) Let A be any subset of X. Let y \notin ker (f(A)). Then there exists a closed set F containing y such that $f(A) \cap F = \phi$. Hence, we have $A \cap f^{-1}$ (F) = ϕ and $\alpha * cl$ (A) $\cap f^{-1}$ (F) = ϕ . Hence, we obtain $f(\alpha * cl (A)) \cap F = \phi$ and $y \notin f(\alpha * cl (A))$. Thus, $f(\alpha * cl (A)) \subset \text{ker } (f(A))$.

(4) \Rightarrow (5) Let B be any subset of Y. By (4) and lemma [2.13] f(α *cl (f⁻¹ (B))) \subset (ker B) and α *cl (f⁻¹) (B)) $\subset f^{-1}$ (ker B)

(5) \Rightarrow **(1)** Let B be any open set in Y. By (5) and lemma [2.13] α *cl (f⁻¹ (B)) \subset f⁻¹ (ker B) = f⁻¹ (B) and α *cl (f⁻¹ (B)) = f⁻¹ (B). We obtain that f⁻¹ (B) is α * closed in X.

Theorem 3.25: If f: $(X, \tau) \to (Y, \sigma)$ is α *irresolute and $g: (Y, \sigma) \to (Z, \eta)$ is contra α * continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α^* continuous.

Proof: Let O be any open set in (Z, η) . Since, g is contra α * continuous, then $g^{-1}(O)$ is α * closed in (Y, σ) and since f is α *irresolute, then f⁻¹(g⁻¹ (O)) is α * closed in (X, τ) . Therefore, g ∘ f is contra α * continuous.

Theorem 3.26: If f: $(X, \tau) \to (Y, \sigma)$ is contra α^* continuous g: $(Y, \sigma) \to (Z, \eta)$ is continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α^* continuous.

Proof: Let O be any open set in (Z, η) . Since, g is continuous, then $g^{-1}(0)$ is open in (Y, σ) and since f is contra α^* continuous, then $f^{-1}(g^{-1}(0))$ is α^* closed in (X, τ) . Therefore, $g \circ f$ is contra α^* continuous.

Theorem 3.27: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra α continuous g: $(Y, \sigma) \rightarrow (Z, \eta)$ is continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α^* continuous.

Proof: Let O be any open set in (Z, η) . Since, g is continuous, then $g^{-1}(O)$ is open in (Y, σ) and since f is contra α continuous, then f⁻¹(g⁻¹ (O)) is α closed in (X, τ) . Hence by thm [2.15], every α closed set is α ^{*} closed. We have $f^{-1}(g^{-1}(0))$ is α * closed in (X, τ) . Therefore, $g \circ f$ is contra α * continuous.

Theorem 3.28: If f: $(X, \tau) \to (Y, \sigma)$ is contra α^* continuous g: $(Y, \sigma) \to (Z, \eta)$ is g-continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α^* continuous.

Proof: Let O be any open set in (Z, η) . Since, g is g- continuous, then $g^{-1}(O)$ is g- open in (Y, σ) and since f is contra α * continuous, then f⁻¹(g⁻¹ (O)) is α * closed in (X, τ) . Therefore, g ∘ f is contra α * continuous.

Theorem 3.29: If f: $(X, \tau) \to (Y, \sigma)$ is strongly α^* continuous and g: $(Y, \sigma) \to (Z, \eta)$ is contra α^* continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is contra continuous.

Proof: Let O any open set in (Z, η) . Since, g is contra α * continuous, then $g^{-1}(0)$ is α * closed in (Y, σ) and since f is strongly α^* continuous, $f^{-1}(g^{-1}(0))$ is closed in (X, τ) . Therefore, $g \circ f$ is contra continuous.

Theorem 3.30: If f: $(X, \tau) \to (Y, \sigma)$ is perfectly α^* continuous, and g: $(Y, \sigma) \to (Z, \eta)$ is contra α^* continuous, then their composition $g \circ f: (X, \tau) \to (Z, \eta)$ is.

Proof: Let O any open set in (Z, η) . By thm [2.15] every open set is α^* open set which implies O is α^* open in (Z, η) . Since, g is contra α^* continuous, then $g^{-1}(O)$ is α^* closed in (Y, σ) and since f is perfectly α^* continuous, then f^{-1} (g⁻¹(O)) is both open and closed in X, which implies (g ∘ f)⁻¹ (O) is both open and closed in X. Therefore, $g \circ f$ is perfectly $\alpha *$ continuous.

Theorem 3.31: Let f: $(X, \tau) \to (Y, \sigma)$ is surjective α *irresolute and α * open and g: $(Y, \sigma) \to (Z, \eta)$ be any function. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α^* continuous if and only if g is contra α^* continuous.

Proof: The if part is easy to prove. To prove the only if part, let F be any closed set in (Z, η) . Since $g \circ f$ is contra α^* continuous, then f⁻¹(g⁻¹ (F)) is α^* open in (X, τ) and since f is α^* open surjection, then $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is $\alpha *$ open in (Y, σ) . Therefore, g is contra $\alpha *$ continuous.

Theorem 3.32: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function and X a $\alpha * T_{1/2}$ space. Then the following are equivalent:

- 1. f is contra continuous
- 2. f is contra α $*$ continuous
- **Proof:**

(1) \Rightarrow (2) Let O be any open set in (Y, σ) . Since f is contra continuous, f⁻¹ (O) is closed in (X, τ) and since Every closed set is α *closed, f⁻¹ (O) is α *closed in (X, τ) . Therefore, f is contra α * continuous.

(2) \Rightarrow (1) Let O be any open set in (Y, σ). Since, f is contra α * continuous, f⁻¹ (O) is α * closed in (X, τ) and since X is $\alpha * T_{1/2}$ space, $f^{-1}(O)$ is closed in (X, τ) . Therefore, f is contra continuous.

Theorem 3.33: If $f: (X, \tau) \to (Y, \sigma)$ is contra $\alpha *$ continuous and (Y, σ) is regular, then f is $\alpha *$ continuous.

Proof: Let x be an arbitrary point of X and O be any open set of Y containing $f(x)$. Since Y is regular, there exists an open set U in Y containing $f(x)$ such that $cl(U) \subset O$. Since, f is contra α^* continuous, so by thm[3.24], there exists $N \in \alpha * O(X, \tau)$, such that $f(N) \subset cl(U)$. Then, $f(N) \subset O$. Hence by thm[2.14], f is α * continuous.

Theorem 3.34: If f is α *continuous and if Y is locally indiscrete, then f is contra α *continuous.

Proof: Let O be an open set of Y. Since Y is locally discrete, O is closed. Since, f is α *continuous, $f^{-1}(O)$ is α * closed in X. Therefore, f is contra α * continuous.

Theorem 3.35: If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is continuous and X is a locally indiscrete space, then f is contra α *continuous.

Proof: Let O be any open set in (Y, σ) . Since f is continuous $f^{-1}(0)$ is open in X. and since X is locally discrete, $f^{-1}(0)$ is closed in X. Every closed set is $\alpha *$ closed. $f^{-1}(0)$ is $\alpha *$ closed in X. Therefore, f is contra *****continuous

Theorem 3.36: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function and $g: X \rightarrow X \times Y$ the graph function, given by $g(x) = (x - \tau)g(x)$ x,f(x)) for every $x \in X$. Then f is contra α * continuous if g is contra α * continuous.

Proof: Let F be a closed subset of Y. Then $X \times F$ is a closed subset of $X \times Y$. Since g is a contra α * continuous, then $g^{-1}(X \times F)$ is a α *open subset of X. Also, $g^{-1}(X \times F) = f^{-1}(F)$. Hence, f is contra α * continuous.

Theorem 3.37: Let $\{X_i / i \in I\}$ be any family of topological spaces. If $f : X \to \Pi X_i$ is a contra α^* continuous function. then $\pi_i \circ f : X \to X_i$ is contra α^* continuous for each $i \in I$, where π_i is the projection of ΠX_i onto X_i .

Proof: Suppose U_i is an arbitrary open sets in X_i for $i \in I$. Then $\pi_i^{-1}(U_i)$ is open in ΠX_i . Since f is contra α * continuous, $f^{-1}(\pi_i^{-1}(U_i)) = (\pi_i \circ f)^{-1}(U_i)$ is $\alpha *$ closed in X. Therefore, $\pi_i \circ f$ is contra $\alpha *$ continuous.

For a map f: $(X, \tau) \rightarrow (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.

IV. Contra α ^{*} closed graph

Definition 4.1: The graph $G(f)$ of a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *Contra* α ** closed graph* in X \times Y if for each $(x,y) \in (X \times Y) - G(f)$ there exists $U \in \alpha$ *O (X, τ) and $V \in C(Y, y)$ such that $(U \times V)$ $\bigcap G(f) = \phi$.

Lemma 4.2: The graph G(f) of a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is α^* closed in $(X \times Y)$ if and only if for each $(x,y) \in (X \times Y) - G(f)$, there exists an $U \in \alpha *O(X, x)$ and an open set V in Y containing y such that $f(U)$ $V = φ$.

Proof: We shall prove that $f(U) \cap V = \phi \Leftrightarrow (U \times V) \cap G(f) = \phi$. Let $(U \times V) \cap G(f) \neq \phi$. Then there exists $(x,y) \in (X \times Y)$ and $(x,y) \in G(f)$. This implies that $x \in U$, $y \in V$ and $y = f(x) \in V$. Therefore, $f(U)$ $\bigcap V \neq \emptyset$. Hence the result follows.

Theorem 4.3: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra α * continuous and Y is Urysohn, G(f) is a contra α * closed graph in $X \times Y$.

Proof: Let $(x,y) \in (X \times Y)$ - G(f), then $y \neq f(x)$ and there exist open sets A and B such that $f(x) \in A$, $y \in B$ and $cl(A) \cap cl(B) = \phi$. Since f is contra α * continuous, there exist $O \in \alpha$ *O (X, x) such that f(O) $\subset cl(A)$. Therefore, we obtain $f(O) \cap cl(B) = \phi$. Hence by lemma [4.2], $G(f)$ is contra $\alpha *$ closed graph in $X \times Y$.

Theorem 4.4: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is α^* continuous and Y is T₁, then G(f) is Contra α^* closed graph in X $\times Y$.

Proof: Let $(x,y) \in (X \times Y)$ - G(f), then $y \neq f(x)$ and since Y is T₁ there exists open set V of Y, such that $f(x)$ $\in V$, $y \notin V$. Since f is α^* continuous, there exist α^* open set U of X containing x such that f(U) $\subset V$. Therefore, $f(U) \cap (Y - V) = \phi$ and Y –V is a closed set in Y containing y. Hence by lemma [4.2], G(f) is Contra α * closed graph in $X \times Y$.

Definition 4.5 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called *almost contra* α * *continuous* if $f^{-1}(0)$ is α * closed set in X for every regular open set O in Y.

Theorem 4.6Every contra α *continuous function is almost contra α *continuous.

Proof: Let O be a regular open set in Y. Since, every regular open set is open which implies O is open in Y. Since $f: (X, \tau) \to (Y, \sigma)$ is contra α *continuous then $f^{-1}(O)$ is α * closed in X. Therefore, f is almost contra α *continuous.

Remark 4.7: The converse of the above theorem need not be true.

Example 4.8: Let $X = Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{ab\}, Y\}$. RO(Y, σ) = { ϕ , {a}, $\{\phi\}, Y\}$, $\alpha * C(X, \tau) = \{\phi, \tau\}$, ${a}, {b}, {c}$, ${ab}, {bc}, {ac}, X$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = a$, $f(b) = b = f(c)$. clearly, f is contra α^* continuous, but f⁻¹ ({b}) = {bc} is not regular open in X. Therefore, f is not almost contra α^* continuous.

Theorem 4.9: The following are equivalent for a function f: $(X, \tau) \rightarrow (Y, \sigma)$

- 1. f is almost contra α *continuous.
- 2. $f^{-1}(F)$ is α *open in X for every regular closed set F in Y.
- 3. for each $x \in X$ and each regular open set F of Y containing $f(x)$, there exists $U \in \alpha *O(X,x)$ such that $f(U) \subset F$
- 4. for each $x \in X$ and each regular open set V of Y non containing $f(x)$, there exists an $\alpha *$ closed set K of X non – containing x such that $f^{-1}(V) \subset K$

Proof:

- (1) \Leftrightarrow (2) Let F be any regular closed set of Y. Then (Y F) is regular open and therefore $f^{-1}(Y - F) = X - f^{-1}(F) \in \alpha * C(X)$. Hence, $f^{-1}(F)$ is $\alpha *$ open in X. The converse part is obvious.
- (2) \Rightarrow (3) Let F be any regular closed set of Y containing f(x). Then f⁻¹(F) is α * open in X and x \in f⁻¹(F). Taking $U = f^{-1}(F)$ we get $f(U) \subset F$.
- (3) \Rightarrow (2) Let F be any regular closed set of Y and x $\in f^{-1}(F)$. Then there exists $U_x \in \alpha *O(X,x)$ such that $f(U_x) \subset F$ and so $U_x \subset f^{-1}(F)$. Also, we have $f^{-1}(F) \subset U_{x \in f^{-1}(F)}U_x$. Hence, $f^{-1}(F)$ is $\alpha *$ open in X.
- (3) \Leftrightarrow (4) Let V be any regular open set of Y non containing f(x). Then (Y V) is regular closed set in Y containing f(x). Hence by (c), there exists $U \in \alpha * O(X,x)$ such that f(U) $\subset (Y - V)$. Hence, $U \subset f^{-1}(Y)$ $-V$) $\subset X$ - f⁻¹(V) and so f⁻¹(V) $\subset (X-U)$. Now, since $U \in \alpha$ *O (X), (X-U) is α * closed set of X not containing x. The converse part is obvious.

Definition 4.7: A space X is said to be *locally* α ** indiscrete* if every α *open set of X is closed in X.

Theorem 4.8: A contra α *continuous function f: $(X, \tau) \rightarrow (Y, \sigma)$ is continuous when X is locally α * indiscrete.

Proof: Let O be an open set in Y. Since, f is contra α *continuous then f⁻¹ (O) is α * closed in X. Since, X is locally α ^{*} indiscrete which implies $f^{-1}(O)$ is open in X. Therefore, f is continuous.

Theorem 4.9: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is α *irresolute map with Y as locally α * indiscrete space and g: (Y, σ) \rightarrow (Z, η) is contra α *continuous, then g ∘ f is α *continuous.

Proof: Let B be any closed set in Z. Since g is contra α *continuous, g⁻¹ (B) is α * open in Y. But Y is locally α ^{*} indiscrete, g⁻¹ (B) is closed in Y. Hence, g⁻¹ (B) is α ^{*}closed in Y. Since, f is α ^{*}irresolute, $f^{-1}(g^{-1}(B)) = (g \circ f)^{-1}(B)$ is α * closed in X. Therefore, $g \circ f$ is α * continuous.

Definition 4.10: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be *pre* α **open* if the image of every α *open set of X is α *open in Y.

Theorem 4.11: Let $f: (X, \tau) \to (Y, \sigma)$ be surjective α^* irresolute pre α^* open and g: $(Y, \sigma) \to (Z, \eta)$ be any map. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is contra α *continuous if and only if g is contra α *continuous.

Proof: The if part is easy to prove. To prove the " only if " part, let $g \circ f: (X, \tau) \to (Z, \eta)$ be contra α *continuous and let B be a closed subset of Z. Then (g \circ f)⁻¹ (B) is α *open in X which implies f⁻¹(g⁻¹(B)) is α *open in X. Since, f is pre α *open, f(f⁻¹(g⁻¹(B))) is α *open of X. So, g⁻¹(B) α *open in Y. Therefore, g is contra α * continuous.

REFERENCE

- [1] K.Alli , **Contra g#p-Continuous Functions,** International Journal of Mathematics Trends and Technology- Volume 4 Issue 11- Dec 2013
- [2] M. Caldas, S. Jafari, T. Noiri, M. Simeos, **A new generalization of contra-continuity** via Levines g-closed sets, Chaos Solitons Fractals 42 (2007), 1595–1603.
- [3] J. Dontchev, **Contra-continuous functions and strongly S-closed spaces**, Internat. J.Math. Math. Sci. 19 (1996), 303–310.
- [5] J. Dontchev, T. Noiri, **Contra-semicontinuous functions,** Math. Pannon. 10 (1999),159–168.
- [6] S. Jafari, T. Noiri, **Contra** α continuous functions between topological spaces, Iran.Int. J. Sci. 2 (2001), 153–167.
- [7] S. Jafari, T. Noiri, **Contra-super-continuous functions**, Ann. Univ. Sci. Budapest 42(1999), 27–34.
- [8] M. Mrsevic, **On pairwise R0 and pairwise R1 bitopological spaces**, Bull. Math. Soc.Sci. Math. R.S. Roumanie 30(78) (1986), 141–148.
- [9] Pious Missier .S and P.Anbarasi Rodrigo, **Some Notions of nearly open sets in Topological Spaces**, International Journal of Mathematical Archive 4(12), 2013, 1-7
- [10] Pious Missier .S and P.Anbarasi Rodrigo, **On *-Continuous** , Outreach Multi Displinary Research Journal (Accepted)
- [11] Pious Missier .S and P.Anbarasi Rodrigo, **Strongly *-Continuous functions in topological spaces,** International Organization of Scientific Research