Integration by Parts for D_K Integral

T. K. Garai¹, S. Ray²

¹Department of Mathematics, Raghunathpur College, Raghunathpur-723133, Purulia, West Bengal, India ²Department of Mathematics, Siksha Bhavan, Visva-Bharati, Santiniketan West Bengal,India

 ${\it ABSTRACT}$: In this paper we have defined D_k integral and proved the integration by parts formula. *Key Words and phrases: Absolutely Continuous function, Generalised absolutely continuous function, Denjoy integration. 2000 Mathematics subject Classification: Primary 26A24 Secondary 26A21, 26A48, 44A10.*

I. PRELIMINERIES

Let *f* be a real valued function defined on a set *E*. Let $c, d \in E, c < d$, and $k \ge 2$ the oscillation of *f* on $[c,d] \cap E$ of order *k* is defined to be

$$
O_k(f,[c,d] \cap E) = \sup |(d-c)[f,c,x_1,x_2,...x_{k-1},d]|
$$

where the sup is taken over all points $x_1, x_2, \ldots, x_{k-1}$ on $[c, d] \cap E$ and $[f, c, x_1, \ldots, x_{k-1}]$ represents the

 k^{th} order divided difference of *f* at the *k*+1 points $c, x_1, ..., x_{k-1}$,*d* .

The weak variation of *f* of order *k* is defined as follows,

 $V_k(f, E) = \sup \sum O_k(f, [c_i, d_i] \cap E)$ *i*

where the sup is taken over all sequences $\{(c_i, d_i)\}\$ of non overlapping intervals with end points on *E*. Then *f* is said to be of k^{th} variation in the wide sense if $V_k(f, E) < \infty$ and it is written as $f \in BV_k(E)$. The function *f* is said to be k^{th} absolutely continuous on *E* if for any $\varepsilon > 0$ there is $\delta > 0$ such that for every sequence of non overlapping intervals (c_i, d_i) with end points on *E* and with $\sum_i (d_i - c_i) < \delta$ $(d_i - c_i) < \delta$ we have

 $\sum_i O_k(f,[c_i,d_i]\bigcap E) < \varepsilon$ $O_k(f, [c_i, d_i] \cap E) < \varepsilon$ and we write it as $f \in AC_k(E)$.

The function *F* is said to be generalised absolutely k^{th} continuous (resp. of generalised bounded k^{th} variation) on *E* if $E = \bigcup E_i$ where each E_i is closed and $f \in AC_k(E_i)$ (resp. $f \in BV_k(E_i)$ for each *i* and we write it as $f \in AC_k G(E)$ (resp. $f \in BV_k G(E)$)

II. AUXILIARY RESULT

Following result will be needed which are proved in [2] **Lemma 2.1** *Let E be a closed set. Then* $f \in AC_kG(E)$ (resp. $f \in BV_kG(E)$) *if and only if every closed* subset of E has a portion on which f is AC_{k} ($resp.BV_{k}$)

Lemma 2.2 *The classes of functions* $AC_k(E), BV_k(E), AC_kG(E), BV_kG(E)$ *are all linear spaces.*

Theorem 2.3 *If* $f \in BV_k(E_i)$ *then* $f_{an}^{(k)}$ $\genfrac{(}{)}{0pt}{}{(k)}{ap}$ exists finitely a.e on E, where $\genfrac{(}{)}{0pt}{}{k}{ap}$ *ap is repeated approximate derivative of f.*

Theorem 2.4 *Let* $k \geq 2$ *and* f : $[a,b] \rightarrow R$ *be such that*

²Corresponding auther.

-

¹The research work of first author is financially supported by UGC, MRP.

- $i)$ $f \in AC_kG([a,b]) \cap D[a,b]$
- *ii*) $f_{ap}^{(k-2)}$ *exists in [a,b]*

iii) if for r=0,1,...,k-2 and $x \in (a,b)$ one of $\begin{pmatrix} r \\ f \end{pmatrix}$ $\binom{(r)}{ap}$ ₊'(x) and (f^(r)
 ap $\begin{pmatrix} r \ n \end{pmatrix}$ $\begin{pmatrix} x \end{pmatrix}$ *exists then* $\begin{pmatrix} f \ n \end{pmatrix}$ *ap)'(x) exists.(this condition is weaker than the smoothness condition of* $f_{an}^{(r)}$ *ap).*

iv) $f_{ap}^{(k)} \ge 0$ *a.e*

Then $f^{(k-1)}$ exists and is nondecreasing in [a,b] and. $f^{(k-1)} \in AC_1([a,b])$ The following theorem is proved for *k*=2 in Theorem-4 of [2], and similarly can be proved any *k*. **Theorem 2.5** Let F and G be AC_k (resp.BV_k) on E . Then FG is AC_k (resp.BV_k) on E. Then FG is

 AC_k (resp.BV_k) on E.

Corollary 2.6 If F and G are AC_kG (resp. BV_kG) on [a,b] then FG is so in [a,b] The proof is similar of the corollary of Theorem-4 of [2].

III. THE D_k **INTEGRAL**

A function $f:[a,b] \to R$ is said to be D_k integrable on $[a,b]$ if there exists a continuous function ϕ :[*a*,*b*] \rightarrow *R* such that

- i) $f \in AC_kG([a,b])$
- ii) $\phi_{ap}^{(k-2)}$ exists in [a,b]
- iii) $\phi_{ap}^{(r)}$ is smooth in (*a*,*b*) for *r*=0,1,...,*k*-2.

iv) $\phi_{an}^{(k-1),+}(a)$ *ap* $\phi_{an}^{(k-1),+}(a)$, $\phi_{an}^{(k-1),-}(b)$ *ap* $\phi_{ap}^{(k-1),-}(b)$ exists and $\phi_{ap}^{(k)} = f$ $\phi_{ap}^{(k)} = f$ a.e in [*a*,*b*]. Where $\phi_{ap}^{(k-1)+}(a)$ *ap* $\phi_{ap}^{(k-1),+}(a)$ and $\phi_{ap}^{(k-1),-}(b)$ *ap* $\phi_{an}^{(k-1),-}(b)$ denote right hand approximate derivative of ϕ at *a* of order *k*-1 and left hand approximate derivative of ϕ at *b* of order *k*-1. (The existence of $\phi_{ap}^{(k)}$ a.e in [*a*,*b*] is guaranteed by Theorem-2.3)

The function ϕ if exists is called k^{th} primitive of *f* on [*a*,*b*]. If $F = \phi_{ap}^{(k-1)}$ we call *F* to be an indefinite D_k integral of *f* and

$$
\phi_{ap}^{(k-1)-}(b) - \phi_{ap}^{(k-1)+}(a) = F(b) - F(a)
$$

is called the definite D_k integral of *f* over [*a*,*b*]and is denoted by

$$
(D_k) \int_{a}^{b} f(t)dt.
$$

The definite D_k integral is unique by Theorem-2.4. The indefinite D_k integral is unique upto an additive constant and the *k th* primitive is unique upto an addition of polynomial of degree *k*-1. **Theorem 3.1** Let f be D_k integrable on [a,b] and on [b,c] and let ϕ and ψ be k^{th} primitives of f in [a,b] and [b,c] respectively. If $\phi^{(k-1),-}(b)$ and $\psi^{(k-1),+}(b)$ exists then f is D_k integrable in [a,c] and

$$
(D_{k})\int\limits_{a}^{b}f+(D_{k})\int\limits_{b}^{c}f=(D_{k})\int\limits_{a}^{c}f.
$$

Proof: Since $\phi_{an}^{(k-1),-}(b)$ *ap* $\phi_{an}^{(k-1),-}(b)$ and $\psi_{an}^{(k-1),+}(b)$ $\psi_{ap}^{(k-1),+}(b)$ exists, the previous derivative exists in some left and right neighbourhood of *b* . Let

$$
H(x) = \begin{cases} \phi(x) + \psi(b) + (x - b)\psi^{(1),+}(b) + \dots + \frac{(x - b)^{(k-1)(}}{(k-1)!}(x - b)\psi^{(k-1),+}(b))f, x \in [a, b], \\ \psi(x) + \phi(b) + (x - b)\phi^{(1),-}(b) + \dots + \frac{(x - b)^{(k-1)(}}{(k-1)!}(x - b)\phi^{(k-1),-}(b))f, x \in [b, c]. \end{cases}
$$

Then *H* is continuous in [a,c]. We show that *H* is the kth primitive of *f* in [a,c]. Clearly $H \in AC_kG([a,c])$. Also for $0 \le r \le k - 2$,

$$
H_{ap}^{(r)}(x) = \begin{cases} \phi_{ap}^{(r)}(x) + \psi^{(r)+}(b) + (x-b)\psi^{(r+1)+}(b) + \dots + \frac{(x-b)^{(k-r-1)}}{(k-r-1)!} \psi^{(k-1)+}(b), if, x \in [a, b), \\ \psi_{ap}^{(r)}(x) + \phi^{(r)-}(b) + (x-b)\phi^{(r+1)-}(b) + \dots + \frac{(x-b)^{(k-r-1)}}{(k-r-1)!} \phi^{(k-1)-}(b), if, x \in (b, c], \\ \psi^{(r)+}(b) + \phi^{(r)-}(b), if, x = b \end{cases}
$$

And hence $H_{ap}^{(k-2)}$ exists in [a,c]. We are to show that $H_{ap}^{(r)}$ is smooth at *b* for $0 \le r \le k-2$. Let $h > 0$ and $0 \le r \le k - 2$. Then

$$
0 \le r \le k - 2.
$$
 Then
\n
$$
\frac{H_{ap}^{(r)}(b+h) + H_{ap}^{(r)}(b-h) - 2H_{ap}^{(r)}(b)}{h} = \frac{H_{ap}^{(r)}(b+h) - H_{ap}^{(r)}(b)}{h} + \frac{H_{ap}^{(r)}(b-h) - H_{ap}^{(r)}(b)}{h}
$$
\n
$$
= \frac{\psi_{ap}^{(r)}(b+h) - \psi^{(r)+}(b) + h\phi^{(r+1)-}(b)}{h} + \frac{\phi_{ap}^{(r)}(b-h) - \phi^{(r)-}(b) - h\psi^{(r+1)+}(b)}{h} + O(h)
$$

The first term tends to $\phi^{(r+1),-}(b) + \psi^{(r+1),+}(b)$ and the second term tends to $-\phi^{(r+1),-}(b) - \psi^{(r+1),+}(b)$ as $h \rightarrow 0$. So $H_{ap}^{(r)}$ is smooth at b for $0 \le r \le k-2$. Hence $H_{ap}^{(r)}(x)$ $\sum_{ap}^{(r)} (x)$ is smooth on (a,c) for $0 \le r \le k-2$. The proof of other properties of kth primitive are easy. Hence H is the kth primitive of *f* on [a,c]. So *f* is D_k integrable on [a,c]. Also

$$
(D_k)\int_a^c f = H_{ap}^{(k-1)-}(c) - H_{ap}^{(k-1)-}(a)
$$

= { $\phi^{(k-1)-}(b)$ + $\psi^{(k-1)-}(c)$ } - { $\phi^{(k-1)+}(a)$ + $\psi^{(k-1)+}(b)$ }
= { $\phi^{(k-1)-}(b)$ - $\phi^{(k-1)+}(a)$ } + { $\psi^{(k-1)-}(c)$ - $\psi^{(k-1)+}(b)$ }
= $(D_k)\int_a^b f + (D_k)\int_b^c f$

Theorem 3.2 Let f be D_k integrable in [a,b] and let a<c<b. Let ϕ the k^{th} primitive of f in [a,b]. If $\phi_{ap}^{(k-1)}(c)$ *ap* $\phi_{an}^{(k-)}$ *exists then f is* D_k *integrable on [a,c] and on [c,b] and*

$$
(D_k) \int\limits_{a}^{b} f + (D_k) \int\limits_{b}^{c} f = (D_k) \int\limits_{a}^{c} f.
$$

The proof is immediate.

Theorem 3.3 Let f and g be D_k integrable in [a,b] and α , β are constants then $\alpha f + \beta g$ is D_k integrable *in [a,b] and*

$$
(D_k)\int_a^b (cf + \beta g) = \alpha(D_k)\int_a^b f + \beta(D_k)\int_a^b g
$$

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.1| Jan. 2015 | 63|

The proof follows from the definition of the integral and Lemma 2.2. **Theorem 3.4** If f be D_k integrable on [a,b], then f is measurable and finite a.e on [a,b].

Proof: Since *f* is D_k integrable on [a,b], there is a continuous function $\phi \in AC_kG([a,b])$ such that $\phi_{ap}^{(r)}$ is smooth for $r = 1, 2, \ldots k-2$ and $\phi_{ap}^{(r)} = f$, *a.e* on [a,b]. Let [a,b]= $\bigcup E_n$, where E_n is closed and ϕ is *AC_k* on E_n for each n. Let $E_n = P_n \cap D_n$ where P_n is perfect and D_n is countable. Since $\phi \in AC_kG(E_n)$, $\phi \in AC_kG(D_n)$ and so by Theorem-6(i) of [3], $\phi^{(k-1)}$ is AC_1 on P_n where the derivative $\phi^{(k-1)}$ is taken with respect to P_n . Let $\psi_n(x) = \phi^{(k-1)}(x)$ $\psi_n(x) = \phi^{(k-1)}(x)$ for $x \in P_n$ and ψ_n be linear in the closure of all intervals contiguous to P_n . Then $\psi_n \in BV_1[a, b]$ and so ψ_n' exists *a.e* on [a,b]. Also $f = \phi_{ap}^{(k)}(x) = \psi_n'(x)$ *a.e* in E_n . Since derivative of a function of bounded variation is finite *a.e* and measurable, *f* is finite *a.e* and is measurable on E_n for each *n*. The rest is clear.

Theorem 3.5 *If f* is D_k integrable and f \geq 0 in [a,b], then f is Lebesgue integrable and the integrals are equal. *Proof:* Let ϕ be the kth primitive of *f*. So $\phi_{ap}^{(k)} = f \ge 0$ *a.e* in [a,b]. Then from Theorem-2.4, $\phi^{(k-1)}$ exists and is nondecreasing in [a,b] and $\phi^{(k-1)} \in AC_1([a,b])$. Hence $\phi^{(k)}$ exists *a.e* in [a,b] and is Lebesgue integrable in [a,b]. Hence *f* is Lebesgue integrable in [a,b].

Theorem 3.6 *(Integration by parts). Let* f : $[a,b] \rightarrow R$ *is* D_k *integrable in*[a,b], F *be its indefinite* D_k integral and F is D^* integrable. Let $G^{(k-1)}$ be absolutely continuous in [a,b], then fG is D_k integrable in [a,b] *and*

$$
(D_k)\int_a^b fG=[FG]_a^b-(D^*)\int_a^b FG'
$$

Proof: Let ϕ be the kth primitive of *f* in [a,b] .Let $\phi(x) = \phi(x)G(x), x \in [a,b]$. Then since $\phi_{ap}^{(r)}$ is smooth for r=0,1,....,k-2 and G^(k-1) exists finitely so $\psi_{ap}^{(r)}$ is smooth for r=0,1,...,k-2. Since G^(k-1) is absolutely continuous ,G is AC_k in [a,b] and since ϕ is AC_kG in [a,b]. And a.e in [a,b] $\phi_{ap}^{(r)} = \phi G^{(k)} + {}^{k}c_{1}\phi'G^{(k-1)} + \dots + k\phi^{(k-1)}G' + \phi_{ap}^{(k)}G$ $W_{ap}^{(r)} = \phi G^{(k)} + {}^{k}C_{1}\phi'G^{(k-1)} + \dots + k\phi^{(k-1)}G' + \phi'_{k}$ $=\phi G^{(k)} + {}^{k}c_{1}\phi'G^{(k-1)} + \dots + kFG' + fG$ 1 $\phi G^{(k)} + {}^{k}c_{1}\phi^{k}$ So $\phi G^{(k)} + {^k c_1} \phi' G^{(k-1)} + \dots + {kFG' + fG}$ is D_k 1 $\phi G^{(k)} + {^k}c_1\phi'G^{(k-1)} + \dots + kFG' + fG$ is D_k integrable in [a,b]. Let $H(x) = \phi G^{(k-1)} + {^{k-1}c_1 \phi' G^{(k-2)}} + \dots + (k-1)\phi^{(k-2)} G'$ 1 $f(x) = \phi G^{(k-1)} + {^{k-1}}c_1\phi'G^{(k-2)} + \dots + (k-1)\phi^{(k-1)}$ Then in a similar way as that of Theorem-14 of [1] it can be proved that $H \in ACG^*([a,b])$. Again since $\phi^{(k-1)}$ and $G^{(k)}$ exists a.e in [a,b], we have,

$$
H'(x) = \phi G^{(k)} + {^{k-1}c_0 + {^{k-1}c_1}} \phi' G^{(k-1)} + \dots (k-1)\phi^{(k-1)}G'
$$

= $\phi G^{(k)} + {^{k}c_1} \phi' G^{(k-1)} + \dots + (k-1)FG'$

So $\phi G^{(k)} + {^k}c_1\phi'G^{(k-1)} + ... + (k-1)FG'$ 1 $\phi G^{(k)} + {^k}c_1\phi'G^{(k-1)} + ... + (k-1)FG'$ is D^{*} integrable in [a,b] and so D_k integrable and H is indefinite D_k integral. Since F is D^{*} integrable and G' is absolutely continuous in [a,b], FG' is D^{*} integrable by Theorem2.5(p.246) of [4] and hence FG' is D_k integrable in [a,b]. Again since, $(\phi G^{(k)} + {^k}c_1\phi'G^{(k-1)} + \dots + kFG' + fG)$ 1 $\phi G^{(k)} + {k \choose 1} \phi' G^{(k-1)} + \dots + {kFG' + fG}$, $(\phi G^{(k)} + {k \choose 1} \phi' G^{(k-1)} + \dots + (k-1)FG')$ $(\phi G^{(k)} + {^k}c_1\phi'G^{(k-1)} + \dots + (k-1)FG')$ and FG' are D_k integrable, by Theorem3.3, *fG* is D_k integrable in [a,b] and

$$
(D_k)\int_a^b fG = (D_k)\int_a^b (\phi G^{(k)} + {k \choose 1} \phi' G^{(k-1)} + \dots + kFG' + fG)
$$

\n
$$
-(D^*)\int_a^b (\phi G^{(k)} + {k \choose 1} \phi' G^{(k-1)} + \dots + (k-1)FG') - (D^*)\int_a^b FG'
$$

\n
$$
= [\psi_{ap}^{(k-1)}]_a^b - [H]_a^b - (D^*)\int_a^b FG'
$$

\n
$$
= [\phi G^{(k-1)} + {k-1 \choose 1} \phi' G^{(k-2)} + \dots + (k-1) \phi^{(k-2)} G' + FG]_a^b
$$

\n
$$
-[\phi G^{(k-1)} + {k-1 \choose 1} \phi' G^{(k-2)} + \dots + (k-1) \phi^{(k-2)} G']_a^b - (D^*)\int_a^b FG'
$$

\n
$$
= [FG]_a^b - (D^*)\int_a^b FG'
$$

REFERENCES

- [1.] S.N.Mukhopadhyay and S.K.Mukhopadhyay,"A generalised integral with application to trignometric series". Analysis Math., **22**(1996) 125-146.
- [2.] S. N. Mukhopadhyay and S. Ray, "Generalised Absolutely kth Continuous Function". Indian Journal of Mathematics, **Vol 53, No 3**(2011) 459-466.
- [3.] S.K.Mukhopadhyay and S.N.Mukhopadhyay, "Functions of bounded kth variation and absolutely kth continuous functions". Bull.Austral.Math.Soc **46**(1992),91-106.
- [4.] S.Saks,"Theory of the integral",Dover,Newyork(1937).