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I. INTRODUCTION 

Exploitation of biological resources as practiced in fishery, and forestry has strong impact on dynamic 

evolution of biological population. The over exploitation of resources may lead to extinction of species which 

adversely affects the ecosystem. However, reasonable and controlled harvesting is beneficial from economical 

and ecological point of view. The research on harvesting in predator-prey systems has been of interest to 

economists, ecologists and natural resource management for some time now.  

The optimal management of renewable resources has been extensively studied by many authors [1, 2, 

3, 7, 8, 12]. The mathematical aspects of management of renewable resources have been discussed by [10]. He 

had investigated the optimum harvesting of logistically growing species. The problem of combined harvesting 

of two ecologically independent species has been studied [10, 13]. The effects of harvesting on the dynamics of 

interacting species have been studied Measterton-Gibbons [14], Chaudhuri et.al. [6-9] with constant harvesting, 

the prey predator model is found to have interesting dynamical behavior including stability, Hopf bifurcation 

and limit cycle [4, 5, 11, 15].  

The multi species food web models have found to have rich dynamical behavior [16, 18]. S Kumar et. 

al. [17] have investigated the harvesting of predator species predating over two preys. 

            In this paper the dynamics of two ecologically independent species which are being harvested have been 

discussed when the dynamics of effort is considered separately. 

 

II. THE MATHEMATICAL MODEL 

              Consider two independent biological species with densities 1 2andX X with logistic growth. The 

Mathematical model of two harvesting prey species with effort rate is given by the following system of ordinary 

differential equations: 
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The logistic growth is considered for the two preys. The model does not consider any direct 

competition between the two populations. The constants andi i i iK ,r , A , B , are model parameters assuming 

only positive values. The effort E is applied to harvest both the species and C is total cost of fishing. The 
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harvesting is proportional to the product of effort E and the fish population density iX .The catch-ability 

coefficients iq  are assumed to be different for the two species. In the model, the third equation considers the 

dynamics of effort E. The constants 1p  and 2p are the price of the per unit prey species. The last equation of 

(1) implies that the rate of increase of the effort is proportional to the rate of net economic revenue. The constant 

k is the proportionality constant.  

Let the constant 0M is the reference value of E . Introduce the following dimensionless transformations: 

              
1 0 1 1 1 0 1 2 1 1 3 2 2

4 2 1 5 2 2 1 6 1 0 7 2 00

, ( 1,2), , , ,

, , , ;

i i it rT y X K i x E M w A q E r w B K w B K

w r r w A q M r w kK M w kK M

      

   
 

The dimensionless nonlinear system is obtained as: 
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                                                    (2) 

 

III. EXISTENCE OF EQUILIBRIUM POINTS 

            Since 0 1;   1,2iy i   , the underlying non-linear model (2) is bounded and has a unique solution. 

There are at most seven possible equilibrium points of the nonlinear harvesting model: 

                0 1 2 30,0,0 ,   1,0,0 ,   0,1,0 ,   1,1,0E E E E    , 

          * * * * * *

4 1 1 2 1 1 1 1 1 6 2,0, ,    (1 )(1 ) ;    ( )E y x x y w y w y C w p w Cw     

 

 

           * * * * * *

5 2 4 2 3 2 5 2 5 2 7 30, , ,     (1- )(1 ) ;    ( - ),E y x x w y w y w y C w p w Cw     

 

 

              * * *

6 1 2, , .E y y x  

Theorem 3.1 The equilibrium point  * *

4 1 ,0,E y x  is feasible only when  

         1 1 6 2(1 )C w p w w                                         (3) 

Theorem 3.2 The equilibrium point  * *

5 20, ,E y x  is feasible only when  

              5 2 7 3(1 )C w p w w                   (4) 

The proofs of the two theorems are straightforward as
*0 1; 1,2
i

y i   . 

Theorem 3.3 The positive non-zero equilibrium 6E of nonlinear harvesting model (2) exists provided the 

following conditions are satisfied: 

        1 1 6 2 5 2 7 3;    C w p w w C w p w w                  (5) 

Proof:  Proof is given in [6]; the equilibrium points are 

                            
* * * *
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The positive non-zero biological equilibrium  * * *

6 1 2, ,E y y x exists provided the conditions (5) are satisfied. 
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It may further be observed that conditions (3) and (4) imply (5), that is if  * *

4 1 ,0,E y x  and 

 * *

5 20, ,E y x exists then 6E will also exists. However, the existence of 6E is possible irrespective of 

4E and 5E provided the condition (5) is satisfied. 

 

IV. STABILITY ANALYSIS 

             The variational matrix about the point 0E is given by 

              0 4

1 0 0

0 0

0 0 -

J w

C

 
 


 
  

     

From the above variational matrix, it is seen that there are two unstable manifolds along both X ,Y  axis and 

one stable manifold along Z axis. Therefore the point 0E is a saddle point, that is, at very small densities of 

species the effort decreases and tends to zero, while for small efforts the densities of harvesting species will start 

increasing, 

The variational matrices about the axial point  1 1,0,0E   and  2 0,1,0E  are given by 
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    and 2 4 5 3

5 2 7

3
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0 - - /(1 )
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1

J w w w
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C

w
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  

 respectively. 

From the matrix 1J , it is seen that there exists a stable manifold along X  axis and an unstable manifolds along 

Z  axis. Stable manifold along  Y  axis exists provided 1 1 6 2(1 ) 0w p w C w   . Observe that this condition 

violates the existence of  * *

4 1 ,0,E y x . The point 1E is a saddle point.  

Similarly, from the matrix 2J , it is seen that there exists a stable manifold along Y  axis and an unstable 

manifolds along X  axis. Stable manifold along  Z  axis exists provided 1 1 6 2(1 ) 0w p w C w   . This 

condition excludes the existence of equilibrium point  * *

5 20, ,E y x .The point 2E is a saddle point. 

The variational matrix about the point  3 1,1,0E   is given by 
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Thus, the equilibrium point  3 1,1,0E   is stable provided the following condition is satisfied: 

          1 1 6 5 2 7

2 3

0
(1 )

w p w w p w
C
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
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 
               (6) 

 

 

 

Theorem 4.1: The equilibrium point  * *

4 1 ,0,E y x is locally asymptotically stable provided  
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*

2 2 1 1 5 5( -1) 2 ( - ) 1   w w y w w w                (7) 

Proof. The variational matrix about the point  * *

4 1 ,0,E y x is given by 
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The equilibrium point 4E is locally stable if the following conditions are satisfied: 

          
* * 2 *

1 2 1 1 1 5 5(1- ) ;   and    ( - ) ;w x w y y w w w   

Substitution for x* and simplification yields the stability conditions as  

           *

2 2 1 4 1 5 1 4( -1) 2 ( - ) 1   w w y w w w w w    

The equilibrium 4E is unstable when the condition (10) is violated.  

 Similarly, the stability conditions for the equilibrium 5E are stated in the theorem 4.2. Its proof is omitted.   

 

Theorem 4.2: The equilibrium point  * *

5 20, ,E y x is locally asymptotically stable provided  

          
*

3 3 1 1 5 5( -1) 2 ( - ) 1  w w y w w w                                                  (8) 

The equilibrium 5E is unstable when the condition (11) is violated.  

 

The following theorem gives the conditions for the locally stability of the nonzero positive equilibrium 

point  * * *

6 1 2, ,E y y x . 

 

Theorem 4.3: The positive non-zero biological feasible equilibrium  * * *

6 1 2, ,E y y x is locally asymptotically 

stable if the following conditions are satisfied: 

               
* * 2

2 1(1- ) ;x w y                                                                                                                  (9) 

              
2 * * 2

4 1 3 5 1(1- )w w x w w y                                                                                                      (10) 

              
2 * * * * * 2

1 1 1 2 1 3 5 2 1( )(1- )w x y w w y w w y y                                                                                 (11) 

              
2 * * * * * 2

4 1 2 1 2 1 3 5 2 1( )(1- )w w x y w w y w w y y                                                                             (12) 

 

Proof: Proof is given in [6].            

Thus, the positive non-zero biological feasible equilibrium 6E is locally asymptotically stable if the conditions 

given by (9-12) are satisfied. 

 

The following theorem gives the conditions for the global stability of the nonzero positive equilibrium point. 

 

Theorem 4.4 Let the local stability conditions given by (9-12) hold. The positive non-zero biological feasible 

equilibrium  * * *

6 1 2, ,E y y x is global stable if the following condition is satisfied: 
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                2 * * * *

3 2 4 4 2 1 3 2 2 2 1 3 2 3( - ) 4 (1 ) - (1 ) -w w w w w y w y w w y w y w       

               1 7 5 2 3

5 1 6 1 2

( - )
0

( - )

w w w p w C

w w w p w C
                                                                                                  (13) 

Proof: Proof is given in [6];  

 

V. THE OPTIMUM HARVEST POLICY 
 The economic rent (net revenue) at any time is given by 

             
1 1 6 1 2 5 7 2

1 2

2 1 3 2

( , , )
1

p w w y p w w y
p x y y x C

w y w y

 
  

  
                                                             

 The present value J  of a continuous time stream of revenues is given by the expression 

             
- -1 1 6 1 2 5 7 2

1 2

2 1 3 20 0

( , , ) ( )
1

t tp w w y p w w y
J p x y y e dt x C e dt

w y w y

 
 


  

                                    (14) 

 

Consider the integrand of the present value 

             

   

1 1 6 1 2 5 7 2
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Here  is the instantaneous annual rate of discount.  

Using classical Euler necessary conditions to maximize the positive nonzero equilibrium such that 

             

1 1 2 2

0;   0;   0.
G d G G d G G d G

y dt y y dt y x dt x
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           
 

 

On solving the first equation, we get 

             
 

 

1 1 6

1 1

1 1 6

0  1 2 0; or

1 2 0 & 0

t

t

G d G
y p w e

y dt y

y e p w













  
      

  

   

                                                (15) 

Similarly other conditions yield   

 

              4 2 2 5(1 2 ) 0 & 0tw y e p w                                                     (16)   

             0tCe                                                                                                                    (17)   

 

Case (1): Let 0te   for t   , then  

             11 2 .y                                                                                                                   (18) 

            4 2(1 2 )w y                                                                                                             (19)                                                                         

            0  C                                                                                         (20) 

 

Combining (22) and (23) gives  

            1 4 2 4(1 ) / 2.y w y w                                                                                                  (21) 

 

Case (2): Let 0te   for  but 0t   then 

          1 11 2 .y c                                                                                                               (22) 

          4 2 2(1 2 )w y c                                                                                                         (23)                                                                         
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          0C                                                                                              (24) 

Eliminating 1 2, ,c c  using (26) and (27) we get  

         1 4 2 4(1 ) 2.y w y w                                                                                                    (25) 

Hence the optimum line (21) and (25) are same in the both cases. Therefore the optimum equilibrium will be the 

intersection of line (25) and first isocline of (2). 

 

VI. EXISTENCE OF HOPF BIFURCATION 

          The characteristic equation of the above variational matrix about 6E  is obtained as [6]. By the Routh-

Hurwitz criterion, the positive nonzero equilibrium point is locally asymptotically stable under the conditions 

(9-12). 

The Hopf bifurcation occurs at 
*C C  where the value of 0 1 2-a a a becomes zero. Substituting 0 1 2a a a  

into (16), we get, 

               
3 2 2

0 1 0 1 1 00 ( )( ) 0a a a a a a            . 

 This gives purely imaginary roots and one real root:   

1 0 a       ;     
2,3  1 ai              (26)   

 

Transversality condition: - Let the characteristic equation be such that it contains a pair of purely imaginary 

roots 
'

2

'

11  i  and one real root, say 1c : 

       





0)2()2(

.0)-()-()(-( 

1

2

1
 

1

'

1
 

2

1
 2

1

'

1
 3

 

11
 

1
 

cccor

c




                                         (27) 

 

Comparing the coefficients of (31) and (16) we get  

         
2

0

'

1
 '

1
 

2

'

1
 

0 1 )2(2a)2a(a a                                                                      (28) 

Differentiating (30) with respect to bifurcation parameter C , setting
*,C C and rescaling that 

 ' *

1( ) 0C  .we get [18], 

 

                                                       (29) 

                                            

 

 

 

Thus the transversality condition is satisfied. So there exists a family of periodic solutions bifurcating from 6E in 

the neighborhood of 
*C  that is,

* *( , ).C C C     

 

VII. NUMERICAL SIMULATION 
As the solution of the system is bounded, the long time behavior of the solution is obtained as limit 

cycle, limit point attractor, quasi-periodic. For global dynamic behavior, numerical simulations of the 

underlying non-linear system are carried out. Consider the biological feasible set of parameters as 

1 2 3 4 5 6 7 1 22.0, 1.2, 1.6, 1.12, 2.5,  1.3, 1.7, 0.15, 0.12,  w w w w w w w p p                                    (30)   

The sign change from positive to negative for the expression 0 1 2-a a a  is observed as the values of 

parameter C  are varied. The existence of hopf bifurcation is observed in the neighborhood of  0.14C  .
 
 

The variational matrix at the hopf bifurcation point  0.14C  is given by 

1

   -0.1725       0.1967       -0.3617

    0.1390     -0.0848        -0.3406

    0.0755      0.0972             0

J

 
 


 
  

 

*

0 1 2
 0  1 '

1

2

0  1

( )

0
2( )

C C

aa a
a a

C C C

C a a





 
 

   
 

 
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The eigenvalues of the matrix 1J are obtained as 0.2989, 0.0208 + 0.2443i, 0.0208 - 0.2443i .   

From the eigenvalues the Hopf bifurcation is evident is evident in the neighborhood of  0.14C  . 

The value of the expression 0 1 2-a a a  is 0.0030 0  at C =0.156. Fig. 1 (a) shows the phase 

space trajectories converging to the point (0.42973,  0.36954,  0.59802)  for the data set (30) at 

 0.156C  , starting with two different initial conditions. In other words, the nontrivial equilibrium point 

(0.42973,  0.36954,  0.59802)  is stable giving the persistence of the system for the given set of 

parameters. Fig 1(b) shows the time series for the data set (30) at  0.156C  .  

Figure 2 (a) shows the phase space trajectories and their time series for the data set (30) at  0.14C  . Figure 2 

(b) shows the long time behavior in phase space trajectories and their time series for the same data set (30) 

at 0.14C  . The solution is quasi periodic. The value of the expression 0 1 2-a a a  is 

-0.0057 0,  at 0.14C   

 

                                                                       
(a)                                                                    (b) 

Fig. 1: For the data set (34); (a) 3D behavior (b) time series 

  
Fig. 2 (a). 
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Fig. 2 (b). Quasiperiodic behavior 

 

However, for 0.11C  , there exists a limit cycle for the same set of data. As is evident from the Fig 3. The 

value of the expression 0 1 2-a a a  is -0.0077 0 ,   at 0.11C  . 

 

 
Fig. 3. Limit cycle 

     

VIII. CONCLUSIONS 

            In this model, separate dynamics of harvesting effort is considered. The local and global persistence of 

the harvested preys has been analyzed. The optimum population level is investigated. The existence of hopf 

bifurcation with respect to total cost of fishing is observed. 

 

REFERENCES 
[1]. Asep K.Supriatona, Hugh P.Possingham, Optimal harvesting for a predator-prey metapopulation, Bulletin of 

Mathematical Biology 60:49-65 (1998). 

[2]. B. Dubey, Peeyush Chandra and Prawal Sinha, A model for fishery resource with  reserve area, Nonlinear Analysis: 

Real World Applications  4( 4):625-637 (2003). 

[3]. Berg Hugo A.van den, Yuri N. Kiselev, S.A.L.M.Kooijman, Orlov Michael V., Optimal allocation between nutrient 

uptake and growth in a microbial trichome, Journal of Mathematical Biology 37:28-48 (1998). 

[4]. Brauer, F., Soudack, A.C., Stability regions and transition phenomena for harvested predator-prey systems, J.Math. 

Biol.7:319-337 (1979). 

[5]. Brauer, F., Soudack, A.C., Stability regions in predator-prey systems with constant- rate prey harvesting, J.Math. 

Biol.8:55-71 (1979). 



The Dynamics of Two Harvesting Species with variable Effort Rate with The Optimum Harvest Policy 

| IJMER | ISSN: 2249–6645 |                          www.ijmer.com                  | Vol. 5 | Iss. 8 | August 2015 | 24 | 

[6]. Brahampal Singh;  The Global Stability of Two Harvesting Species with variable Effort Rate; International Journal of 

Education and Science Research Review (ISSN 2348-6457, impact factor 1.24) page no-226-230; Volume-1, Issue-2 

, April- 2014. 

[7]. Chaudhuri, K.S., A bioeconomic model of harvesting of a multispecies fishery, Ecol.Model.32:267-279(1986). 

[8]. Chaudhuri, K.S., Dynamic optimization of combined harvesting of two-species fishery, Ecol.Model.41:17-25(1988). 

[9]. Chaudhuri, K.S., Saha Ray, S., Bionomic exploitation of a Lotka-Volterra prey-predator system, 

Bull.Cal.Math.Soc.83:175-186 (1991). 

[10]. Chaudhuri, K.S., Saha Ray, S., On the combined harvesting of a prey -predator system. J. Biol. syst. 4 (3): 373-389 

(1996). 

[11]. Colin W.Clark, Mathematical bioeconomics: The optimal management of renewable resources, John Wiley & Sons, 

USA (1976).  

[12]. Dai, G., Tang, M., Coexistence region and global dynamics of a harvested predator-prey system, SIAM J.Appl, 

Math.58:193-210 (1998). 

[13]. Meng Fan, Ke Wang, Optimal harvesting policy for single population with periodic coefficients, Mathematical 

Bioscience 152:165-177 (1998). 

[14]. Mesterton-Gibbons, M., On the optimal policy for the combined harvesting of independent species, Nat.Res.model. 

2:107-132 (1987). 

[15]. Mesterton-Gibbons, M., On the optimal policy for the combined harvesting of predator and prey, 

Nat.Res.model.3:63-90 (1988). 

[16]. Nguyen Phong chau, Destabilising effect of periodic harvest on population dynamics, Ecological Modeling 127:1-9 

(2000). 

[17]. S. Gakkhar, R. K. Naji, On a food web consisting of a specialist and a generalist predator, Journal of biological 

Systems 11(4): 365-376 (2003).  

[18]. S.Kumar, S.K.Srivastava, P.Chingakham, Hopf bifurcation and stability analysis in a harvested one-predator-two-

prey model, Applied Mathematics and Computation 129:107-118 (2002). 

[19]. Y.Takeuchi, Global Dynamical Properties of Lotka-Voltera Systems, World Scientific (1996).  

 


