ON SUMS AND PRODUCTS OF q-k-EP MATRICES

 1 Dr.K.Gunasekaran, 2 Mrs. K. Gnanabala,

¹Head, Department of Mathematics, Ramanujan Research centre, Govt. Arts College (Autonomous), Kumbakonam-612001. ²Research scholar, Ramanujan Research centre, Department of Mathematics, Govt. Arts College (Autonomous), Kumbakonam-612001.

ABSTRACT:- Necessary and Sufficient conditions for the sums and products of q-k-EP matrices of rank r to be q-k-EP in minkowski space *m* are discussed. Also equivalent conditions for the product of q-k-EPblock matrices to be q-k-EP are established.As an application it is shown that the sum and parallel sum of parallel summable q-k-EP matrices are q-k-EP and we have shown that a block matrix in Minkowski space can be expressed as a product of q-k-EP matrices in *m*.

Keywords:- q-k-EP matrices, Range symmetric matrices, Minkowski space,etc., **AMS Mathematical classification**: 15A57

I. INTRODUCTION

Throughout we shall deal with $H_{n\times n}$, the space of nxn complex matrices. Let H_n be the space of complex n - tuples. For $A \in H_{n \times n}$, let A^T and A^* denote the transpose, conjugate transpose of A. Let A^- be a generalized inverse $(AA^{-}A = A)$ and A be the Moore-Penrose inverse of A [5]. A matrix A is called EP_r if $\rho(A)=r$ and N(A)=N(A*) or R (A)=R(A*) where $\rho(A)$ denotes the rank of A; N(A) and R(A) denote the null space and range space of A respectively. Through let 'k' be a fixed product of disjoint transpositions in $S_n = \{1,2,...,n\}$ and K be the associated permutation matrix. A matrix $A = (a_{ij}) \in C_{n \times n}$ is said to be k-hermitian if $a_{ij} = \overline{a}_{k(j),k(i)}$ for i,j=1,2,...,n. A theory for k-hermitian matrices is developed in [1].

For $x = (x_1, x_2, ..., x_n)^T \in H_n$. Let us define the function, $K(x) = (x_{k(1)}, x_{k(2)}, ..., x_{k(n)})^T \in H_n$. A matrix $A \in H_{n\times n}$ said to be q-k-EP if it satisfies the condition $Ax = 0 \Leftrightarrow A^*k(x)=0$ or equivalently $N(A)=N(A^*K)$. In addition to that, A is q-k-EP KA is EP or AK is EP and A is q-k-EP A * is q-k-EP. Moreover, A is said to be q-k−EP_r, if A is q-k-EP and of rank r. For further properties of q-k-EP matrix one may refer[4]. Let G be the Minkowski metric tensor defined by $Gx=(x_1, -x_2, -x_3, ..., -x_n)^T$ for $(x_1, x_2, ..., x_n) \in H_n$. Clearly the Minkowski metric matrix.

Minkowski inner product on C_n is defined by $(u,v)=[u,Gv]$, where [...] denotes the conventional Hilbert space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as m. With respect to the Minkowski inner product, since $(Ax,y)=(x, A^y)$, $A = GA*G$ is called the Minkowski adjoint of the matrix $A \in H_{n\times n}$ and A^* is the usual Hermitian adjoint. In this paper we give necessary and sufficient conditions for sums ofq-k-EP matrix to be q-k-EP. As an application it is shown that sum and parallel summable q-k-EP matrices are q-k-EP.

II. SUMS OF K-EP MATRICES

Lemma: 2.1

Let A_1, A_1, \ldots, A_1 , $\in H_{n \times n}$ and let $A = \sum_{i=1}^{m} A_i$. Consider the following conditions:

(a) $N(A) \subseteq N(A_i)$ for $i = 1, 2, ..., m;$

(b)
$$
N(A) = \bigcap_{i=1}^{m} N(A_i);
$$

(c)
$$
\rho(A) = \rho \begin{pmatrix} A_1 \\ \vdots \end{pmatrix};
$$

- (c) $\rho(A) = \rho \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$
- (d) $\sum_{i=1}^{m} \sum_{j=1}^{m} A_i^* A_j = 0;$

(e) $\rho(A) = \sum_{i=1}^{m} \rho(A_i).$

Then the following statements hold:

(i) Conditions (a) , (b) and (c) are equivalent.

(ii) Condition (d) implies (a), but (a) does not implies (d).

(iii) Condition (e) implies (a), but (a) does not implies (e).

Proof:[11]

 (i) (a) \Leftrightarrow (b) \Leftrightarrow (c): $N(A) \subseteq N(A_i)$ for each $I \implies N(A) \subseteq \cap N(A_i)$. Since $N(A) \subseteq N(\Sigma A_i) \supseteq N(A_1) \cap N(A_2) \dots \cap N(A_m)$, it follows that $N(A) \supseteq \cap N(A_1)$. Always $\bigcap_{i=1}^{m} N(A_i) \subseteq N(A)$. Hence $N(A) = \bigcap_{i=1}^{m} N(A_i)$; Thus (b) holds. Now, $N(A) = \bigcap_{i=1}^{m} N(A_i) = N \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$ $_{i=1}^{m} N(A_i) = N \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ Therefore, $\rho(A) = \rho \begin{pmatrix} A_1 \\ \vdots \end{pmatrix}$ and (c) holds. Am Conversely, $\rho(A) = \rho \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$ \int and N $\begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$ $= \bigcap_{i=1}^m N(A_i) \subseteq N(A) \Rightarrow N(A) = \bigcap_{i=1}^m N(A_i)$ And (b) holds. Hence $N(A) \subseteq N(A_i)$ for each i and (a) holds. $(ii) (d) \Rightarrow (a):$ Since $\sum_{i \neq j} A_i^* A_j = 0$ $A^*A = (\Sigma A_i)^*(\Sigma A_i)$ $=(\sum A_i^{\ast})(\sum A_i)$ $=\sum A_i^* A_i$ $N(A)=N(A^*A) = N(\sum_{i}^{A_i}A_i)$ $= N \left(\begin{array}{c} A_1 \\ \vdots \\ A_m \end{array} \right)$ $\overline{}$ ∗ $\begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$ $\overline{}$ $= N$ $\left(\begin{array}{c} A_1 \\ A_2 \end{array}\right)$ Am $= N(A_1) \cap N(A_2) ... \cap N(A_m)$ $=\bigcap_{i=1}^m N(A_i).$ Hence $N(A) \subseteq N(A_i)$ for each i and (a) holds. **(a)**⇏**(d):** Let us consider the following example, Let $A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $A_1 + A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Clearly, $N(A_1 + A_2) \subseteq N(A_1)$. Also $N(A_1 + A_2) \subseteq N(A_2)$. But $A_1^*A_2 + A_2^*A_1 \neq 0$. $(iii)(e) \implies (a):$ If rank is additive, that is $\rho(A) = \sum \rho(A_i)$, then by [3], $R(A_i) \cap R(A_j) = \{0\}, i \neq j \Rightarrow N(A) \subseteq N(A_i)$ for each i and (a) holds. **(a)**⇏ **(e):** Consider the example, Let $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ $A_1 + A_2 = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix}$. Here, $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$. But $\rho(A_1 + A_2) \neq \rho(A_1) + \rho(A_2)$. **Theorem 2.2** Let $A_1, A_2, ..., A_m \in H_{n \times n}$ be q-k-EP matrices. If any one of the conditions (a) to (e) of Lemma 2.1 holds, then $A = \sum_{i=1}^{m} A_i$ is q-k-EP. **Proof:** Since each A_i is q-q-k-EP, $N(A_i) = N(A_i * K)$ for each i.

Now, $N(A) \subseteq N(A_i)$ for each i $\Rightarrow N(A) \subseteq \bigcap_{i=1}^{m} N(A_i \times K) \subseteq N(A \times K)$

And $\rho(A) = \rho(A^*K)$. Hence N(A)=(N(A^{*}K). Thus A is q-k-EP. Hence the theorem.

Remark 2.3

In particular, if A is non-singular the conditions automatically hold and A is q-k-EP. Theorem 2.2 fails if we relax the conditions on the A'_i s.

Example 2.4

Consider $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, then the associated permutation matrix $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Thus, $KA_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is EP. Therefore, A_1 is q-k-EP. $KA_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ is not EP. Therefore A_2 is not q-k-EP. $A_1 + A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and K(A₁ + A₂) = $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ which is not EP. Therefore, $(A_1 + A_2)$ is not q-k-EP. However, $N(A_1 + A_2) \subseteq N(A_1^*K) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2^*K) \subseteq N(A_2)$. Moreover, ρ $\left(\begin{smallmatrix} A_1 \\ A_2 \end{smallmatrix}\right)$ $A_2^{A_1}$) = $\rho(A_1 + A_2)$. **Remark 2.5** Theorem 2.2 fails if we relax the condition that A_i 's are q-q-k-EP. For , let $A_1 =$ 1 0 0 0 0 0 $0 -1 0$ $, A_2 = ($ 0 1 0 $0 -1 0$ 1 0 0 and let the associated permutation matrix be $K=$ 0 1 0 0 0 1 1 0 0 . $KA_1 =$ 0 0 0 0 −1 0 1 0 0 is not EP. Therefore, A_1 is not q-k-EP. $KA_2 =$ 0 0 0 0 −1 0 1 0 0 is not EP. Therefore, A_2 is not q-k-EP.

$$
A_1 + A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \text{ and } K(A_1 + A_2) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \text{ which is not EP.}
$$

Therefore, $(A_1 + A_2)$ is not q-k-EP. But $A_1^*A_2 + A_2^*A_1 = 0$.

Remark 2.6

The conditions given in Theorem 2.2 are only sufficient for the sum of q-k-EP matrices to be q-k-EP, but not necessary is illustrated in the following example.

Example 2.7

Let $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and the associated permutation matrix K= $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A₁ and A₂ are k-EP₂. The conditions in Theorem 2.2 does not hold. However $(A_1 + A_2)$ is q-q-k-EP.

Remark 2.8

If A_1 and A_2 are q-k-EP matrices, then by Theorem 2.4(p.221,[4]), $A_1^* = H_1KA_1K$ and $A_2^* = H_2KA_2K$ where H_1 and H_2 are non-singular nxn matrices. If $H_1 = H_2$, then $A_1^* + A_2^* = H_1 K (A_1 + A_2) K \Rightarrow (A_1 + A_2)^* = H_1 K (A_1 + A_2) K \Rightarrow A_1 + A_2$ is q-k-EP. If $(H_1 - H_2)$ is non-singular, then above conditions are also necessary for the sum of q-k-EP matrices to be q-k-EP is given in the following theorem.

Theorem 2.9 [11]

Let K be the permutation matrix associated with the fixedntransposition 'k'. Let $A_1^* = H_1KA_1K$ and $A_2^* = H_2KA_2K$ such that $(H_1 - H_2)$ is non-singular. Then $A_1 + A_2$ is q-k-EP if and only if $N(A_1 + A_2) \subseteq N(A_i)$ for some (and hence both) $i \in \{1,2\}.$ **Proof:** Since $A_1^* = H_1KA_1K$ and $A_2^* = H_2KA_2K$, by Remark 2.8, A_1 and A_2 are q-k-EP matrices. Since,

 $N(A_1 + A_2) \subseteq N(A_2)$ by theorem 2.2, $(A_1 + A_2)$ is q-k-EP. Conversely, let us assume that $A_1 + A_2$ is q-k-EP. By Remark 2.8, there exists a non-singular matrix G such that $(A_1 + A_2)^* = GK(A_1 + A_2)K$

 \Rightarrow A₁^{*} + A₂^{*} = GK(A₁ + A₂)K \Rightarrow H₁KA₁K + H₂KA₂K = GK(A₁ + A₂)K \Rightarrow (H₁KA₁ + H₂KA₂)K= GK(A₁ + A₂)K \Rightarrow (H₁K – GK)A₁ = (GK – H₂K) A₂

 \Rightarrow (H₁ – G)KA₁ = (G – H₂)KA₂ \Rightarrow LKA₁=M K A₂, where L=(H₁ – G), M=(G – H₂) Now $(L+M)(KA₁) = LKA₁ + MKA₁$ $=$ MKA₂ + MKA₁ $= MK(A_1 + A_2)$ And $(L+M)(KA_2) = LK(A_1 + A_2)$ By hypothesis, $L+M = H_1 - G + G - H_2 = H_1 - H_2$ is non-singular. Therefore, $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$. Hence the theorem.

Remark 2.10

The condition $H_1 - H_2$ to be non-singular is essential in Theorem 2.9 is illustrated in the following example.

Example 2.11

Let $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ are both k-EP matrices for the associated permutation matrix, $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Further $A_1^* = A_1 = KA_1K$ and $A_2^* = A_2 = KA_2K \Rightarrow H_1 = H_2 = I$. $(A_1 + A_2) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ is also q-k-EP. But $N(A_1 + A_2) \subset N(A_1)$ or $N(A_1 + A_2) \subset N(A_2)$. Thus Theorem 2.9 fails.

III. PARALLEL SUMMABLE Q-K-EP MATRICES

In this section we shall show that sum and parallel sum of parallel summable (p.s) q-k-EP matrices are q-k-EP. First we shall give the definition and some properties of parallel summable matrices as in (p.188, [5]). **Definition: 3.1**

A₁ and A₂ are said to be parallel summable (p.s) if $N(A_1 + A_2) \subseteq N(A_2)$ or $N(A_1 + A_2)^* \subseteq N(A_2^*)$ or equivalently $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2)^* \subseteq N(A_1^*)$. **Definition: 3.2**

IfA₁ and A₂ are parallel summable(p.s) then parallel sum A₁ and A₂ denoted by A₁ \pm A₂ is defined as $A_1 \pm A_2 = A_1(A_1 + A_2)^{-1}A_1$. The product $A_1(A_1 + A_2)^{-1}A_1$ is invariant for all choices of generalized inverse $(A_1 + A_2)^-$ of $(A_1 + A_2)$ under the conditions that A_1 and A_2 are parallel summable(p.188,[5]). **Properties: 3.3**

Let A_1 and A_2 be a pair of parallel summable(p.s) matrices. Then the following hold:

P.1 $A_1 \overline{\pm} A_2 = A_2 \overline{\pm} A_1$

P.2
$$
A_1^*
$$
 and A_2^* are p.s and $(A_1 \pm A_2)^* = A_1^* \pm A_2^*$

- P.3 If U is non-singular then UA_1 and UA_2 are p.s and ($UA_1 \pm UA_2$) = U($A_1 \pm A_2$)
- P.4 $R(A_1 \pm A_2) = R(A_1) \cap R(A_2)$ $N(A_1 \pm A_2) = R(A_1) + R(A_2)$
- P.5 $(A_1 \pm A_2) \pm A_3 = A_1 \pm (A_2 \pm A_3)$

Lemma: 3.4[11] Let A_1 and A_2 be q-k-EP matrices. Then A_1 and A_2 are p.s if and only if N $(A_1 + A_2)$ ⊆N (A_1) for some (and hence both) i∈ {1,2}. **Proof:** Let A_1 and A_2 be a pair of parallel summable(p.s) matrices \Rightarrow N (A₁ + A₂) \subseteq N(A₁) follows from the Definition 3.1, conversely if N (A₁ + A₂) \subseteq N(A₁), then $N (KA₁ + KA₂) \subseteq N(KA₁)$. Also $N (KA₁ + KA₂) \subseteq N(KA₂)$. Since A_1 and A_2 are q-k-EP matrices, KA_1 and KA_2 are EP matrices, $N (KA₁ + KA₂) \subseteq N(KA₁)$, and $N (KA₁ + KA₂) \subseteq N(KA₂)$. Therefore $KA_1 + KA_2$ is EP. Hence N $(KA_1 + KA_2)^* = N (KA_1 + KA_2)$ $= N (KA₁) \cap N (KA₂)$ $= N (KA₁)^* \cap N(KA₂)^*$ Therefore, N (KA₁ + KA₂)^{*} \subseteq N(KA₁)^{*}, N (KA₁ + KA₂)^{*} \subseteq N(KA₂)^{*} Also N ($KA_1 + KA_2$) $\subseteq N(KA_1)$ \Rightarrow N (K(A₁ + A₂) \subseteq N(KA₁) \Rightarrow N (A₁ + A₂) \subseteq N(A₁) Similarly, $N(A_1 + A_2)^* \subseteq N(A_1)^*$. Therefore, A_1 and A_2 be a pair of parallel summable(p.s) matrices. Hence the theorem.

Remark: 3.5

Lemma 3.4 fails if we relax the condition that A₁ and A₂ are q-k-EP matrices. Let $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Let the associated permuatation matrix $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A_1 is q-k-EP. A_2 is not q-k-EP. $N ((A_1 + A_2) \subseteq N(A_1)$ and $N ((A_1 + A_2) \subseteq N(A_2)$, But N $(A_1 + A_2)^* \subset N(A_1)^*$, N $(A_1 + A_2)^* \subset N(A_2)^*$. Hence A_1 and A_2 are not parallel summable(p.s) matrices. **Theorem: 3.6** LetA₁ and A₂ be a pair of parallel summable(p.s) q-k-EP matrices. Then $A_1 \overline{\pm} A_2$ and $(A_1 + A_2)$ are q-k-EP. **Proof:** Since A_1 and A_2 be a pair of parallel summable(p.s) q-k-EP matrices, by Lemma 3.4, N $(A_1 + A_2) \subseteq N(A_1)$ and N $(A_1 + A_2) \subseteq N(A_2)$. Hence, N (K $(A_1 + A_2) \subseteq N(KA_1)$ and N (K $(A_1 + A_2) \subseteq N(KA_2)$)

N (KA₁ + KA₂) \subseteq N(KA₁) and N (KA₁ + KA₂) \subseteq N(KA₂) Therefore, $KA_1 + KA_2 = K(A_1 + A_2)$ is EP. Then $A_1 + A_2$ is q-k-EP. Since A_1 and A_2 be a pair of parallel

summable(p.s) q-k-EP matrices, KA_1 and KA_2 are p.s EP matrices. Therefore,

 $R(KA_1)^* = R(KA_1)$ and $R(KA_2)^* = R(KA_2)$ $R(KA_1 \pm KA_2)^* = R((KA_1)^* \pm (KA_2)^*$) [By P.2] $= R(KA_1)^* \cap R(KA_2)^*$ [By P.4] $= R(KA_1) \cap R(KA_2)$ [since KA₁ and KA₂ are EP]. $= R(KA_1 \pm KA_2)$

Thus, $KA_1\overline{\pm}KA_2$ is $EP \Rightarrow K(A_1\overline{\pm}A_2)$ is $EP \Rightarrow (A_1\overline{\pm}A_2)$ is q-k-EP. Thus $K(A_1\overline{\pm}A_2)$ is q-k-EP whenever A_1 and A_2 are q-k-EP. Hence the theorem.

Corollary:

Let A₁ and A₂ are q-k-EP matrices such that $N(A_1 + A_2) \subseteq N(A_2)$. If A₃ is q-k-EP commuting with both A_1 and A_2 , then $A_3(A_1 + A_2)$ and $A_3(A_1 \pm A_2) = (A_3A_1 \pm A_3A_2)$ are q-k-EP. **Proof:**

A₁ and A₂ are q-k-EP with $N(A_1 + A_2) \subseteq N(A_2)$.

By Theorem 2.2, $(A_1 + A_2)$ is q-k-EP. Now K A_1 , K A_2 and K $(A_1 + A_2)$ are EP. Since A_3 commutes with A_1 , A_2 and $(A_1 + A_2)$, KA_3 commutes with KA_1 , KA_2 and $K(A_1 + A_2)$ and by Theorem (1.3) of [2], $K(A_3A_1)$, $K(A_3A_2)$ and $KA_3(A_1 + A_2)$ are EP. Therefore, (A_3A_1) , (A_3A_2) and $A_3(A_1 + A_2)$ are q-k-EP. Noe by Theorem 3.6, $(A_3A_1 \pm A_3A_2)$ are q-k-EP By P.3(Properties 3.3). $KA_{3}(A_{1}\pm A_{2})=K(A_{3}A_{1}\pm A_{3}A_{2}).$

Since $(A_3A_1 \pm A_3A_2)$ is q-k-EP. $K(A_3A_1 \pm A_3A_2)$ is EP $\Rightarrow KA_3(A_1 \pm A_2)$ is EP. $A_3(A_1 \pm A_2)$ is q-k-EP. Hence the corollary.

IV. PRODUCT OF Q-K-EP MATRICES IN MINKOWSKI SPACE

Lemma: 4.1

Let A and B be matrices in *m*. Then $N(A^*)\subseteq N(B^*) \Leftrightarrow N(A^-)\subseteq N(B^-)$.

Theorem 4.2[8]

For A, B, $C \in H_{mxn}$, then the following are equivalent:

 (1) CA⁻B is invariant for every A⁻ \in H_{nxm}.

 (2) N(A) \subseteq N(C) and N(A*) \subseteq N(B*)

 (3) C = CA⁻A and B = AA⁻B for every A⁻ \in {1}

Definition: 4.3 [8]

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ $\begin{pmatrix} A & D \\ C & D \end{pmatrix}$ be an nxn matrix. A generalized schur complement of A in M denoted by M|A is defined as $D - CA^{-}B$, where A⁻ is a generalized inverse of A.

Definition: 4.4[10]

A matrix $A \in H_{n \times n}$, is said to be q-k-EP in *m* if and only if $N(A) = N(A^{-1}K)$.

Lemma: 4.5[12] For $A \in H_{nxn}$, the following are equivalent (1) A is q-k-EP (2) KA is EP (3) AK is EP (4) $^{\dagger}A = AA^{\dagger}K$ **Lemma: 4.6[7]** For $A \in H_{n \times n}$, the following are equivalent (1) A is q-k-EP in m. (2) GA is q-k-EP (3) AG is q-k-EP **Theorem: 4.7[8]** Let Mbe of the form (2.1), with $\rho(M)=\rho(A)=r$ then M is q-k-EP matrix in *m* with $k = k_1k_2 \Leftrightarrow A$ is q-k₁-EP in m and $CA^{\dagger}K_1 = -G_1(A^{\dagger}BK_2)^{\sim}$ **Theorem: 4.8[12]** Let A and B be q-k-EP matrices in *m* of rank r and AB of rank r. Then AB is q-k-EP matrix in *m* of rank r if and only if $N(A) = N(B)$. **Proof:** AB is q-k-EP matrix in m of rank r \Rightarrow N(AB) = N(AB)^{\sim}K (by Definition 4.4) \Rightarrow N(B) = N(B^{\sim}A \sim)K, since $\rho(B)=\rho(AB)=r$ (by P.1) $\Rightarrow N(B) \subseteq N(A^{\sim})K$ $\Rightarrow N(B) \subset N(A)$ (by Definition 4.4) $\Rightarrow N(B) = N(A)$, (since $\rho(A)=\rho(B)=r$) Conversely, let $N(A) = N(B)$. To prove that AB is q-k-EP in *m*. Clearly $N(AB) \subseteq N(B)$. Since $\rho(B)=\rho(AB)=r$, we get $N(AB) = N(B)$. (4.1) $N((AB)^{\sim}K) = N(B^{\sim}A^{\sim})K \subseteq N(A)$ (by Definition 4.4) Now, $N(A) = N(A^k) \Rightarrow \rho(A^k) = \rho(A) = r$ $N(B) = N(B[~]K) \Rightarrow \rho(B[~]K) = \rho(B) = r$ $N((AB)^*K) \subseteq N(A)$ $\rho((AB)^{\sim}K) = \rho((AB)^{\sim}) = \rho(AB) = r$ Hence $N((AB)^*K) = N(A)$, since $p(A) = r$ (4.2) From (4.1) and (4.2) we get, $N(AB) = N((AB)^{\sim}K)$, since $N(A) = N(B)$ Thus AB is q-k-EP in *m*. **Theorem: 4.9** Let A and B and AB be q-k-EP matrices in *m* of rank r and BA of rank r. Then BA is q-k-EP_r matrix in *m*. **Proof:** Let A and B and AB be q-k-EP matrices in *m* of rank r and BA of rank r. We claim BA is q-k-EP_r in *m*. $N(BA) \subset N(A)$. $\rho(BA) = \rho(A) = r$ Therefore $N(B^*A^*)K \subseteq N(A^*K) = N(A)$ (4.3) $N(AB) \subseteq N(B)$. $\rho(AB) = \rho(B) = r$ Therefore $N(AB) = N(B)$, (4.4) By Theorem (4.8), $N(A) = N(B)$ Hence $N(AB) = N(BA)$. (4.5) Also, $N((BA)^*K) = N(A^*B^*)K \subseteq N(B^*K) = N(B)$ $N((BA)^{K}) \subseteq N(B) = N(AB)$ $N((BA)^*K) \subseteq N(AB)$ $\rho((BA)^*K) = \rho((BA)^*) = \rho(BA) = \rho(A) = r$ $N((BA)^\sim K) = N(AB)$ (4.6) From (3.5) and (3.6) it follows that $N(BA) = N((BA)^{2}K)$ Therefore, BA is $q-k-EP_r$ matrix in m . **Lemma: 4.10[12]** For complex matrices A and B, $N(A*K) \subseteq N(B*K)$ if and only if $N(A*K) \subseteq N(B*K)$

Proof: Let us assume that $N(A*K) \subseteq N(B*K)$ we need to prove $N(A*K) \subseteq N(B*K)$ Let us choose $x \in N(A^*K) \Rightarrow A^*Kx = 0$ \Rightarrow GA^{*}GK_x = 0 \Rightarrow A^{*}GK_x = 0 \Rightarrow A*KKGKx = 0 $*KKGKx = 0$ (by P.2) \Rightarrow A^{*}Ky = 0,where $y =$ KGKxand hence Ky = GKx \Rightarrow $y \in N(A*K) \subseteq N(B*K) \Rightarrow B*Ky = 0$ \Rightarrow B^{*}GKx = 0 \Rightarrow GB^{*}GKx = 0 Hence, $B^{\sim}Kx = 0$, $x \in N(B^{\sim}K)$ Thus $N(A^{\sim}K) \subseteq N(B^{\sim}K)$ Conversely, let us assume that $N(A^{\sim}K) \subseteq N(B^{\sim}K)$ We need to prove that $N(A*K) \subseteq N(B*K)$ Let us choose $x \in N(A^*K) \Rightarrow A^*Kx = 0$ \Rightarrow GA^{*}GGKx = 0 \Rightarrow A^{\sim}GKx = 0 \Rightarrow A^{\sim}Ky = 0, \Rightarrow y = KGKx \Rightarrow y \in N(A \in K) \subseteq N(B \in K) \Rightarrow B^{\sim}Ky = 0 \Rightarrow GB*GKy = 0 \Rightarrow GB^{*}GGKx = 0 \Rightarrow B^{*}Kx = 0 \Rightarrow x \in N(B^{*}K) Thus $N(A^*K) \subseteq N(B^*K)$. Hence the result.

REFERENCES

- [1]. R.D.Hill and S.R. Waters, On k-Real and k-Hermitian matrices, Linear Algebra.Appl. 169(1992), 17-29.
- [2]. I.J.Katz and M.H.Pearl, On EPr and normal EPr matrices, J.Red.Nat.But.Stds. 70B(1996), 47-77.
- [3]. G.Marsaglia and G.P.H.Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Alg. 2(1974),269-292.
- [4]. A.R.Meenakshi and S.Krishna moorthy, On q-k-EP matrices, Linear Alg.Appl. 269(1998), 219-232.
- [5]. C.R.Rao and S.K.Mitra, Generalized Inverse of matrices and its applications, Wiley and sons, New York, 1971
- [6]. A.Ben Israel and T.N.E.Greville, Generalized Inverses, Theory and applications, II edition, Canadian Math.Soc.Books in Mathematics, Springer Verlag, Network, Vol.15, 2003.
- [7]. D.Carlson, E.Heynsworth and T.Markham, A generalization of the Schur complement by the Moore-penrose inverse, SIAM.J.Appl.Math., 26(1974), 169-175.
- [8]. A.R.Meenakshi, On Schur complements in an EP matrix, Periadica Math.Hung., 16(1985),193-200
- [9]. A.R.Meenakshi, Range symmetric matrices in Minkowski space, Bull.Malaysian Math.Sci.Soc.,23(2000), 45-52
- [10]. A.R.Meenakshi and K.Bharathi, On k P Matrices in Minkowski space, Antarctica Journal of Mathematics, 8(3), (2011) 191-198
- [11]. A.R.Meenakshi and K.Bharathi, On schur complement in k- EP matrices in Minkowski space, preprint.
- [12]. A.R.Meenakshi and S.Krishna moorthy, On sums of k-EP matrices, Bull. Malaysian Math.Sci.Soc., 22(1999),117- 126
- [13]. K.Bharathi, Product of k-EP Block matrices in Minkowski space, Int.Nat. Journal of Math.Archive, Vol.5, No.1, 2014, 29-38.