ON SUMS AND PRODUCTS OF q-k-EP MATRICES

¹Dr.K.Gunasekaran, ²Mrs. K. Gnanabala,

¹Head, Department of Mathematics, Ramanujan Research centre, Govt. Arts College (Autonomous), Kumbakonam-612001. ²Research scholar, Ramanujan Research centre, Department of Mathematics, Govt. Arts College (Autonomous), Kumbakonam-612001.

ABSTRACT:- Necessary and Sufficient conditions for the sums and products of q-k-EP matrices of rank r to be q-k-EP in minkowski space m are discussed. Also equivalent conditions for the product of q-k-EPblock matrices to be q-k-EP are established. As an application it is shown that the sum and parallel sum of parallel summable q-k-EP matrices are q-k-EP and we have shown that a block matrix in Minkowski space can be expressed as a product of q-k-EP matrices in m.

Keywords: - q-k-EP matrices, Range symmetric matrices, Minkowski space, etc., AMS Mathematical classification: 15A57

I. **INTRODUCTION**

Throughout we shall deal with H_{nxn} , the space of nxn complex matrices. Let H_n be the space of complex n - tuples. For $A \in H_{nxn}$, let A^T and A^* denote the transpose, conjugate transpose of A. Let A^- be a generalized inverse (AA⁻A = A) and A be the Moore-Penrose inverse of A [5]. A matrix A is called EP_r if $\rho(A) = r$ and N(A)=N(A*) or R (A)=R(A*) where $\rho(A)$ denotes the rank of A; N(A) and R(A) denote the null space and range space of A respectively. Through let 'k' be a fixed product of disjoint transpositions in $S_n = \{1, 2, ..., n\}$ and K be the associated permutation matrix. A matrix $A = (a_{ij}) \in C_{nxn}$ is said to be k-hermitian if $a_{ii} = \bar{a}_{k(i),k(i)}$ for i,j=1,2,...,n. A theory for k-hermitian matrices is developed in [1].

For $x = (x_1, x_2, \dots, x_n)^T \in H_n$. Let us define the function, $K(x) = (x_{k(1)}, x_{k(2)}, \dots, x_{k(n)})T \in H_n$. A matrix $A \in H_{nxn}$ said to be q-k-EP if it satisfies the condition $Ax = 0 \Leftrightarrow A^*k(x) = 0$ or equivalently $N(A) = N(A^*K)$. In addition to that, A is q-k-EP KA is EP or AK is EP and A is q-k-EP A * is q-k-EP. Moreover, A is said to be q-k-EPr, if A is q-k-EP and of rank r. For further properties of q-k-EP matrix one may refer[4]. Let G be the Minkowski metric tensor defined by $Gx=(x_1, -x_2, -x_3, ..., -x_n)^T$ for $(x_1, x_2, ..., x_n) \in H_n$. Clearly the Minkowski metric matrix.

Minkowski inner product on C_n is defined by (u,v)=[u,Gv], where [.,.] denotes the conventional Hilbert space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as m. With respect to the Minkowski inner product, since $(Ax,y)=(x, A^{\sim}y)$, A = GA*G is called the Minkowski adjoint of the matrix $A \in H_{nxn}$ and A^* is the usual Hermitian adjoint. In this paper we give necessary and sufficient conditions for sums of q-k-EP matrix to be q-k-EP. As an application it is shown that sum and parallel summable q-k-EP matrices are q-k-EP.

II. SUMS OF K-EP MATRICES

Lemma: 2.1

Let $A_1, A_1, \dots, A_1, \in H_{nxn}$ and let $A = \sum_{i=1}^m A_i$. Consider the following conditions:

- $N(A) \subseteq N(A_i)$ for i = 1, 2, ..., m; (a)
- $N(A) = \bigcap_{i=1}^{m} N(A_i);$ (b)
 $$\begin{split} \rho(A) &= \rho \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}; \\ \sum_{i=1}^m \sum_{j=1}^m A_i^* A_j &= 0; \end{split}$$
- (c)
- (d)

(e) $\rho(\mathbf{A}) = \sum_{i=1}^{m} \rho(\mathbf{A}_i).$

Then the following statements hold:

(i) Conditions (a), (b) and (c) are equivalent.

(ii) Condition (d) implies (a), but (a) does not implies (d).

(iii) Condition (e) implies (a), but (a) does not implies (e).

Proof:[11]

(i) (a) \Leftrightarrow (b) \Leftrightarrow (c): $N(A) \subseteq N(A_i)$ for each $I \implies N(A) \subseteq \cap N(A_i)$. Since $N(A) \subseteq N(\Sigma A_i) \supseteq N(A_1) \cap N(A_2) \dots \cap N(A_m)$, it follows that $N(A) \supseteq \cap N(A_1)$. Always $\bigcap_{i=1}^{m} N(A_i) \subseteq N(A)$. Hence $N(A) = \bigcap_{i=1}^{m} N(A_i)$; Thus (b) holds. Now, N(A) = $\bigcap_{i=1}^{m} N(A_i) = N\begin{pmatrix} A_1 \\ \vdots \\ A \end{pmatrix}$ Therefore, $\rho(A) = \rho\begin{pmatrix} A_1 \\ \vdots \end{pmatrix}$ and (c) holds. Conversely, $\rho(A) = \rho\begin{pmatrix}A_1\\ \vdots\\A_m\end{pmatrix}$ and $N\begin{pmatrix}A_1\\ \vdots\\A_m\end{pmatrix} = \bigcap_{i=1}^m N(A_i) \subseteq N(A) \Rightarrow N(A) = \bigcap_{i=1}^m N(A_i)$ And (b) holds. Hence $N(A) \subseteq N(A_i)$ for each i and (a) holds. (ii) (d) \Rightarrow (a): Since $\sum_{i \neq j} A_i^* A_j = 0$ $A^*A = (\sum A_i)^* (\sum A_i)$ $=(\Sigma A_i^*)(\Sigma A_i)$ $= \sum A_i^* A_i$ $N(A)=N(A^*A) = N(\Sigma A_i^*A_i)$ $= \mathbf{N} \left(\begin{pmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{pmatrix}^* \begin{pmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{pmatrix} \right)$ $\left(\begin{array}{c}A_{1}\\ \vdots\end{array}\right)$ $= N(A_1) \cap N(A_2) \dots \cap N(A_m)$ $= \bigcap_{i=1}^{m} N(A_i).$ Hence $N(A) \subseteq N(A_i)$ for each i and (a) holds. (a)**∌**(d): Let us consider the following example, Let $A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ $A_1 + A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Clearly, $N(A_1 + \overline{A_2}) \subseteq N(A_1)$. Also $N(A_1 + A_2) \subseteq N(A_2)$. But $A_1^*A_2 + A_2^*A_1 \neq 0$. $(iii)(e) \Rightarrow (a):$ If rank is additive, that is $\rho(A) = \sum \rho(A_i)$, then by [3], $R(A_i) \cap R(A_i) = \{0\}, i \neq j \Longrightarrow N(A) \subseteq N(A_i)$ for each i and (a) holds. (a) \neq (e): Consider the example, Let $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ $A_1 + A_2 = \begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix}$. Here, $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$. But $\rho(A_1 + A_2) \neq \rho(A_1) + \rho(A_2)$. Theorem 2.2 Let $A_1, A_2, ..., A_m \in H_{nxn}$ be q-k-EP matrices. If any one of the conditions (a) to (e) of Lemma 2.1 holds, then $A = \sum_{i=1}^{m} A_i$ is q-k-EP. **Proof:** Since each A_i is q-q-k-EP, $N(A_i) = N(A_i^*K)$ for each i.

Now, $N(A) \subseteq N(A_i)$ for each i \Rightarrow N(A) $\subseteq \bigcap_{i=1}^{m} N(A_i^*K) \subseteq N(A^*K)$ And $\rho(A) = \rho(A^*K)$. Hence N(A)=(N(A^*K). Thus A is q-k-EP. Hence the theorem.

| IJMER | ISSN: 2249–6645 |

Remark 2.3

In particular, if A is non-singular the conditions automatically hold and A is q-k-EP. Theorem 2.2 fails if we relax the conditions on the A_i 's.

Example 2.4

Consider $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, then the associated permutation matrix $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Thus, $KA_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is EP. Therefore, A_1 is q-k-EP. $KA_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ is not EP. Therefore A_2 is not q-k-EP. $A_1 + A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and $K(A_1 + A_2) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ which is not EP. Therefore, $(A_1 + A_2)$ is not q-k-EP. However, $N(A_1 + A_2) \subseteq N(A_1^*K) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2^*K) \subseteq N(A_2)$. Moreover, $\rho\left(\begin{pmatrix}A_1\\A_2\end{pmatrix}\right) = \rho(A_1 + A_2).$ Remark 2.5 Theorem 2.2 fails if we relax the condition that A_i's are q-q-k-EP. For , let $A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ and let the associated permutation matrix be $K = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. $\begin{cases} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ \end{cases}$ $KA_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ \end{cases}$ Therefore, A_{1} is not q-k-EP. $KA_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ \end{cases}$ Therefore, A_{2} is not q-k-EP. $A_{1} + A_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & -1 & 0 \\ \end{pmatrix}$ and $K(A_{1} + A_{2}) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \\ \end{pmatrix}$ which is not EP. Therefore, $(A_{1} + A_{2})$ is not q-k-EP. But $A_{1}^{*}A_{2} + A_{2}^{*}A_{1} = 0$. Therefore, $(A_1 + A_2)$ is not q-k-EP. But $A_1^*A_2 + A_2^*A_1 = 0$. Remark 2.6

The conditions given in Theorem 2.2 are only sufficient for the sum of q-k-EP matrices to be q-k-EP, but not necessary is illustrated in the following example.

Example 2.7

Let $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and the associated permutation matrix $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A_1 and A_2 are k-EP₂. The conditions in Theorem 2.2 does not hold. However $(A_1 + A_2)$ is q-q-k-EP. Remark 2.8

If A1 and A2 are q-k-EP matrices, then by Theorem 2.4(p.221,[4]),

 $A_1^* = H_1KA_1K$ and $A_2^* = H_2KA_2K$ where H_1 and H_2 are non-singular nxn matrices. If $H_1 = H_2$, then $A_1^{*} + A_2^{*} = H_1 K (A_1 + A_2) K \Longrightarrow (A_1 + A_2)^* = H_1 K (A_1 + A_2) K \Longrightarrow A_1 + A_2 \text{ is q-k-EP.}$

If $(H_1 - H_2)$ is non-singular, then above conditions are also necessary for the sum of q-k-EP matrices to be q-k-EP is given in the following theorem.

Theorem 2.9 [11]

Let K be the permutation matrix associated with the fixed ntransposition 'k'. Let $A_1^* = H_1 K A_1 K$ and $A_2^* = H_2KA_2K$ such that $(H_1 - H_2)$ is non-singular. Then $A_1 + A_2$ is q-k-EP if and only if $N(A_1 + A_2) \subseteq N(A_i)$ for some (and hence both) $i \in \{1,2\}$.

Proof: Since $A_1^* = H_1 K A_1 K$ and $A_2^* = H_2 K A_2 K$, by Remark 2.8, A_1 and A_2 are q-k-EP matrices. Since, $N(A_1 + A_2) \subseteq N(A_2)$ by theorem 2.2, $(A_1 + A_2)$ is q-k-EP. Conversely, let us assume that $A_1 + A_2$ is q-k-EP. By Remark 2.8, there exists a non-singular matrix G such that

 $(A_1 + A_2)^* = GK(A_1 + A_2)K$ $\Rightarrow A_1^* + A_2^* = GK(A_1 + A_2)K$ $\Rightarrow H_1 K A_1 K + H_2 K A_2 K = G K (A_1 + A_2) K$ $\Rightarrow (H_1 K A_1 + H_2 K A_2) K = G K (A_1 + A_2) K$ \Rightarrow (H₁K - GK)A₁ = (GK - H₂K) A₂

 \Rightarrow (H₁ - G)KA₁ = (G - H₂)KA₂ \Rightarrow LKA₁=M K A₂, where L=(H₁ - G), M=(G - H₂) Now $(L+M)(KA_1) = LKA_1 + MKA_1$ = MKA₂ + MKA₁ = MK(A₁ + A₂) And $(L+M)(KA_2) = LK(A_1 + A_2)$ By hypothesis, $L+M = H_1 - G + G + H_2 = H_1 - H_2$ is non-singular. Therefore, $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$. Hence the theorem.

Remark 2.10

The condition $H_1 - H_2$ to be non-singular is essential in Theorem 2.9 is illustrated in the following example.

Example 2.11

Let $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ are both k-EP matrices for the associated permutation matrix, $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Further $A_1^* = A_1 = KA_1K$ and $A_2^* = A_2 = KA_2K \Longrightarrow H_1 = H_2 = I$. $(A_1 + A_2) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ is also q-k-EP. But N(A₁ + A₂) $\not\subset$ N(A₁) or N(A₁ + A₂) $\not\subset$ N(A₂). Thus Theorem 2.9 fails.

III. PARALLEL SUMMABLE Q-K-EP MATRICES

In this section we shall show that sum and parallel sum of parallel summable (p.s) q-k-EP matrices are q-k-EP. First we shall give the definition and some properties of parallel summable matrices as in (p.188, [5]). **Definition: 3.1**

A₁ and A₂ are said to be parallel summable (p.s) if $N(A_1 + A_2) \subseteq N(A_2)$ or $N(A_1 + A_2)^* \subseteq N(A_2^*)$ or equivalently $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2)^* \subseteq N(A_1^*)$. **Definition: 3.2**

If A_1 and A_2 are parallel summable(p.s) then parallel sum A_1 and A_2 denoted by $A_1 \pm A_2$ is defined as $A_1 \pm A_2 = A_1(A_1 + A_2)^- A_1$. The product $A_1(A_1 + A_2)^- A_1$ is invariant for all choices of generalized inverse $(A_1 + A_2)^-$ of $(A_1 + A_2)$ under the conditions that A_1 and A_2 are parallel summable(p.188,[5]). **Properties: 3.3**

Let A_1 and A_2 be a pair of parallel summable(p.s) matrices. Then the following hold:

P.1 $A_1 \pm A_2 = A_2 \pm A_1$

P.2
$$A_1^*$$
 and A_2^* are p.s and $(A_1 \pm A_2)^* = A_1^* \pm A_2^*$

- P.3 If U is non-singular then UA₁ and UA₂ are p.s and $(UA_1 \pm UA_2) = U(A_1 \pm A_2)$
- $R(A_1 \pm A_2) = R(A_1) \cap R(A_2)$ P.4 $N(A_1 \pm A_2) = R(A_1) + R(A_2)$
- P.5 $(A_1 \pm A_2) \pm A_3 = A_1 \pm (A_2 \pm A_3)$

Lemma: 3.4[11]

Let A₁ and A₂ be q-k-EP matrices. Then A₁ and A₂ are p.s if and only if N $(A_1 + A_2) \subseteq N(A_1)$ for some (and hence both) $i \in \{1,2\}$. **Proof:** Let A₁ and A₂ be a pair of parallel summable(p.s) matrices \Rightarrow N (A₁ + A₂) \subseteq N(A₁) follows from the Definition 3.1, conversely if N (A₁ + A₂) \subseteq N(A₁), then N (KA₁ + KA₂) \subseteq N(KA₁). Also N (KA₁ + KA₂) \subseteq N(KA₂). Since A₁ and A₂ are q-k-EP matrices, KA₁ and KA₂ are EP matrices, N (KA₁ + KA₂) \subseteq N(KA₁), and N (KA₁ + KA₂) \subseteq N(KA₂). Therefore $KA_1 + KA_2$ is EP. Hence N $(KA_1 + KA_2)^* = N (KA_1 + KA_2)$ $= N (KA_1) \cap N(KA_2)$ $= N (KA_1)^* \cap N(KA_2)^*$ Therefore, N $(KA_1 + KA_2)^* \subseteq N(KA_1)^*$, N $(KA_1 + KA_2)^* \subseteq N(KA_2)^*$ Also N $(KA_1 + KA_2) \subseteq N(KA_1)$ \Rightarrow N (K(A₁ + A₂) \subseteq N(KA₁) \Rightarrow N (A₁ + A₂) \subseteq N(A₁) Similarly, N $(A_1 + A_2)^* \subseteq N(A_1)^*$. Therefore, A₁ and A₂ be a pair of parallel summable(p.s) matrices. Hence the theorem.

Remark: 3.5

Lemma 3.4 fails if we relax the condition that A₁ and A₂ are q-k-EP matrices. Let $A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Let the associated permutation matrix $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A_1 is q-k-EP. A_2 is not q-k-EP. N ($(A_1 + A_2) \subseteq N(A_1)$ and N ($(A_1 + A_2) \subseteq N(A_2)$, But N $(A_1 + A_2)^* \not\subset N(A_1)^*$, N $(A_1 + A_2)^* \not\subset N(A_2)^*$. Hence A₁ and A₂ are not parallel summable(p.s) matrices. Theorem: 3.6 LetA₁ and A₂ be a pair of parallel summable(p.s) q-k-EP matrices. Then $A_1 \pm A_2$ and $(A_1 + A_2)$ are q-k-EP. **Proof:** Since A₁ and A₂ be a pair of parallel summable(p.s) q-k-EP matrices, by Lemma 3.4, N $(A_1 + A_2) \subseteq N(A_1)$ and N $(A_1 + A_2) \subseteq N(A_2)$. Hence, N (K(A₁ + A₂) \subseteq N(KA₁) and N (K(A₁ + A₂) \subseteq N(KA₂) N (KA₁ + KA₂) \subseteq N(KA₁) and N (KA₁ + KA₂) \subseteq N(KA₂) Therefore, $KA_1 + KA_2 = K(A_1 + A_2)$ is EP. Then $A_1 + A_2$ is q-k-EP. Since A_1 and A_2 be a pair of parallel summable(p.s) q-k-EP matrices, KA₁ and KA₂ are p.s EP matrices.

Therefore,

Thus, $KA_1 \pm KA_2$ is $EP \Rightarrow K(A_1 \pm A_2)$ is $EP \Rightarrow (A_1 \pm A_2)$ is q-k-EP. Thus $K(A_1 \pm A_2)$ is q-k-EP whenever A_1 and A_2 are q-k-EP. Hence the theorem.

Corollary:

Let A_1 and A_2 are q-k-EP matrices such that $N(A_1 + A_2) \subseteq N(A_2)$. If A_3 is q-k-EP commuting with both A_1 and A_2 , then $A_3(A_1 + A_2)$ and $A_3(A_1 \pm A_2) = (A_3A_1 \pm A_3A_2)$ are q-k-EP. **Proof:**

 A_1 and A_2 are q-k-EP with $N(A_1 + A_2) \subseteq N(A_2)$.

By Theorem 2.2, $(A_1 + A_2)$ is q-k-EP. NowKA₁, KA₂ and K(A₁ + A₂) are EP. Since A₃ commutes with A₁, A₂ and (A₁ + A₂), KA₃ commutes with KA₁, KA₂ and K(A₁ + A₂) and by Theorem (1.3) of [2], K(A₃A₁), K(A₃A₂) and KA₃(A₁ + A₂) are EP. Therefore, (A₃A₁), (A₃A₂) and A₃(A₁ + A₂) are q-k-EP. Noe by Theorem 3.6, (A₃A₁ \pm A₃A₂) are q-k-EP By P.3(Properties 3.3). KA₃(A₁ \pm A₂)=K(A₃A₁ \pm A₃A₂).

Since $(A_3A_1 \pm A_3A_2)$ is q-k-EP. $K(A_3A_1 \pm A_3A_2)$ is EP $\Rightarrow KA_3(A_1 \pm A_2)$ is EP. $A_3(A_1 \pm A_2)$ is q-k-EP. Hence the corollary.

IV. PRODUCT OF Q-K-EP MATRICES IN MINKOWSKI SPACE

Lemma: 4.1

Let A and B be matrices in *m*. Then $N(A^*) \subseteq N(B^*) \Leftrightarrow N(A^-) \subseteq N(B^-)$.

Theorem 4.2[8]

For A, B, C \in H_{mxn}, then the following are equivalent:

(1) CA⁻B is invariant for every
$$A^- \in H_{nxm}$$
.

(2) $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$

(3) $C = CA^{-}A$ and $B = AA^{-}B$ for every $A^{-} \in \{1\}$

Definition: 4.3 [8]

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be an nxn matrix. A generalized schur complement of A in M denoted by M|A is defined as $D - CA^{-}B$, where A⁻ is a generalized inverse of A.

Definition: 4.4[10]

A matrix $A \in H_{nxn}$, is said to be q-k-EP in *m* if and only if $N(A) = N(A^{-}K)$.

Lemma: 4.5[12] For $A \in H_{nxn}$, the following are equivalent (1)A is q-k-EP (2)KA is EP AK is EP (3) $KA^{\dagger}A = AA^{\dagger}K$ (4) Lemma: 4.6[7] For $A \in H_{nxn}$, the following are equivalent (1) A is q-k-EP in m. (2)GA is q-k-EP (3) AG is q-k-EP **Theorem: 4.7[8]** Let Mbe of the form (2.1), with $\rho(M)=\rho(A)=r$ then M is q-k-EP matrix in m with $k = k_1k_2 \Leftrightarrow A$ is q-k₁-EP in m and $CA^{\dagger}K_1 = -G_1(A^{\dagger}BK_2)^{\sim}$ Theorem: 4.8[12] Let A and B be q-k-EP matrices in m of rank r and AB of rank r. Then AB is q-k-EP matrix in m of rank r if and only if N(A) = N(B). **Proof:** AB is q-k-EP matrix in m of rank r \Rightarrow N(AB) = N(AB)[~]K (by Definition 4.4) \Rightarrow N(B) = N(B[~]A[~])K, since ρ (B)= ρ (AB)=r (by P.1) \Rightarrow N(B) \subseteq N(A \sim)K \Rightarrow N(B) \subseteq N(A) (by Definition 4.4) \Rightarrow N(B) = N(A), (since $\rho(A)=\rho(B)=r$) Conversely, let N(A) = N(B). To prove that AB is q-k-EP in *m*. Clearly $N(AB) \subseteq N(B)$. Since $\rho(B) = \rho(AB) = r$, we get N(AB) = N(B). (4.1) $N((AB)^{\sim}K) = N(B^{\sim}A^{\sim})K \subseteq N(A^{\sim}K) = N(A)$ (by Definition 4.4) Now, N(A) = N(A[~]K) $\Rightarrow \rho(A^{~}K) = \rho(A) = r$ $N(B) = N(B^{K}) \Rightarrow \rho(B^{K}) = \rho(B) = r$ $N((AB)^{\sim}K) \subseteq N(A)$ $\rho((AB)^{\sim}K) = \rho((AB)^{\sim}) = \rho(AB) = r$ Hence $N((AB)^{\sim}K) = N(A)$, since $\rho(A) = r$ (4.2)From (4.1) and (4.2) we get, $N(AB) = N((AB)^{\sim}K)$, since N(A) = N(B)Thus AB is q-k-EP in m. Theorem: 4.9 Let A and B and AB be q-k-EP matrices in *m* of rank r and BA of rank r. Then BA is q-k-EP, matrix in *m*. **Proof:** Let A and B and AB be q-k-EP matrices in *m* of rank r and BA of rank r. We claim BA is q-k-EP_r in m. $N(BA) \subseteq N(A)$. $\rho(BA) = \rho(A) = r$ Therefore $N(B^{A^{-}})K \subseteq N(A^{K}) = N(A)$ (4.3) $N(AB) \subseteq N(B)$. $\rho(AB) = \rho(B) = r$ Therefore N(AB) = N(B), (4.4)By Theorem (4.8), N(A) = N(B)Hence N(AB) = N(BA). (4.5)Also, $N((BA)^{\sim}K) = N(A^{\sim}B^{\sim})K \subseteq N(B^{\sim}K) = N(B)$ $N((BA)^{\sim}K) \subseteq N(B) = N(AB)$ $N((BA)^{\sim}K) \subseteq N(AB)$ $\rho((BA)^{\sim}K) = \rho((BA)^{\sim}) = \rho(BA) = \rho(A) = r$ $N((BA)^{\sim}K) = N(AB)$ (4.6)From (3.5) and (3.6) it follows that $N(BA) = N((BA)^{\sim}K)$ Therefore, BA is q-k-EP_r matrix in m. Lemma: 4.10[12] For complex matrices A and B, $N(A^*K) \subseteq N(B^*K)$ if and only if $N(A^*K) \subseteq N(B^*K)$

Proof: Let us assume that $N(A^*K) \subseteq N(B^*K)$ we need to prove $N(A^*K) \subseteq N(B^*K)$ Let us choose $x \in N(A^{\sim}K) \Rightarrow A^{\sim}Kx = 0$ \Rightarrow GA^{*}GKx = 0 $\Rightarrow A^*GKx = 0$ $\Rightarrow A^* KKGKx = 0$ \Rightarrow A^{*}Ky = 0,where y = KGKxand hence Ky = GKx $\Rightarrow y \in N(A^*K) \subseteq N(B^*K) \Rightarrow B^*Ky = 0$ \Rightarrow B^{*}GKx = 0 \Rightarrow GB^{*}GKx = 0 Hence, $B^{\sim}Kx = 0$, $x \in N(B^{\sim}K)$ Thus $N(A^{\sim}K) \subseteq N(B^{\sim}K)$ Conversely, let us assume that $N(A^{K}) \subseteq N(B^{K})$ We need to prove that $N(A^*K) \subseteq N(B^*K)$ Let us choose $x \in N(A^*K) \Rightarrow A^*Kx = 0$ \Rightarrow GA*GGKx = 0 $\Rightarrow A^{\sim}GKx = 0$ $\Rightarrow A^{\sim}Ky = 0$, $\Rightarrow y = KGKx$ \Rightarrow y \in N(A[~]K) \subseteq N(B[~]K) $\Rightarrow B^{\sim}Ky = 0$ \Rightarrow GB*GKy = 0 \Rightarrow GB*GGKx = 0 $\Rightarrow B^*Kx = 0$ $\Rightarrow x \in N(B^*K)$ Thus $N(A^*K) \subseteq N(B^*K)$. Hence the result.

REFERENCES

- [1]. R.D.Hill and S.R. Waters, On k-Real and k-Hermitian matrices, Linear Algebra. Appl. 169(1992), 17-29.
- [2]. I.J.Katz and M.H.Pearl, On EPr and normal EPr matrices, J.Red.Nat.But.Stds. 70B(1996), 47-77.
- [3]. G.Marsaglia and G.P.H.Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Alg. 2(1974),269-292.
- [4]. A.R.Meenakshi and S.Krishna moorthy, On q-k-EP matrices, Linear Alg.Appl. 269(1998), 219-232.
- [5]. C.R.Rao and S.K.Mitra, Generalized Inverse of matrices and its applications, Wiley and sons, New York, 1971
- [6]. A.Ben Israel and T.N.E.Greville, Generalized Inverses, Theory and applications, II edition, Canadian Math.Soc.Books in Mathematics, Springer Verlag, Network, Vol.15, 2003.
- [7]. D.Carlson, E.Heynsworth and T.Markham, A generalization of the Schur complement by the Moore-penrose inverse, SIAM.J.Appl.Math., 26(1974), 169-175.
- [8]. A.R.Meenakshi, On Schur complements in an EP matrix, Periadica Math.Hung., 16(1985),193-200
- [9]. A.R.Meenakshi, Range symmetric matrices in Minkowski space, Bull.Malaysian Math.Sci.Soc.,23(2000), 45-52
- [10]. A.R.Meenakshi and K.Bharathi, On k P Matrices in Minkowski space, Antarctica Journal of Mathematics, 8(3), (2011) 191-198
- [11]. A.R.Meenakshi and K.Bharathi, On schur complement in k- EP matrices in Minkowski space, preprint.
- [12]. A.R.Meenakshi and S.Krishna moorthy, On sums of k-EP matrices, Bull. Malaysian Math.Sci.Soc., 22(1999),117-126
- [13]. K.Bharathi, Product of k-EP Block matrices in Minkowski space, Int.Nat. Journal of Math.Archive, Vol.5, No.1, 2014, 29-38.