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I. INTRODUCTION 
The phenomenon of flow of the fluid over an enclosed torsionally oscillating disc (enclosed in a 

cylindrical casing) has important engineering applications. The most common practical application of it is the 

domestic washing machine and blower of curd etc. Soo [1] has considered first the problem of laminar flow over 

an enclosed rotating disc in case of Newtonian fluid. Sharma and Agarwal [2] have discussed the heat transfer 

from an enclosed rotating disc in case of newtonian fluid. Thereafter Singh K. R. and H. G. Sharma [3] have 

discussed the heat transfer in the flow of a second-order fluid between two enclosed rotating discs. The torsional 

oscillations of newtonian fluids have been discussed by Rosenblat [4]. He has also discussed the case when the 

Newtonian fluid is confined between two infinite torsionally oscillating discs [5]. Sharma & Gupta [6] have 

considered a general case of flow of a second-order fluid between two infinite torsionally oscillating discs. 

Thereafter Sharma & K. R. Singh [7]have solved the problem of heat transfer in the flow of a non-Newtonian 

second-order fluid between torsionally oscillating discs. Hayat [8] has considered non-Newtonian flows over an 

oscillating plate with variable suction. KR Singh, VK Agrawal & A Singh [9] have discussed  Heat transfer in 

the flow of a non-Newtonian second-order fluid between two enclosed counter torsionally oscillating disc. 

Chawla [10] has considered flow past of a torsionally oscillating plane Riley &Wybrow [11] have considered 

the flow induced by the torsional oscillations of an elliptic cylinder.  KR Singh, VK Agarwal [12] have solved 

heat Ttansfer in the flow of a non-newtonian second-order fluid between two enclosed counter torsionally 

oscillating discs with uniform suction and injection. Bluckburn[13] has considered a study of two-dimensional 

flow past of an oscillating cylinder. SadhnaKahre [14] studied the steady flow between a rotating and porous 

stationary disc in the presence of transverse magnetic field.Singh&Singhal [15] have discussed flow of a non-

newtonianreiner-rivlin fluid between two enclosed torsionally oscillating porous discs. Agarwal & Agarwal [16] 

have solved flow of a non-newtoniansecond-order fluid over an enclosedtorsionally oscillating disc. Agarwal & 

Agarwal [17] have also discussed flow of a non-newtonian second-order fluid over an enclosed torsionally 

oscillating disc in the presence of magnetic field. 

Due to complexity of the differential equations and tedious calculations of the solutions, no one has 

tried to solve the most practical problems of enclosed torsionally oscillating discs so far. The authors have 

considered the present problem of heat transfer in the flow of a non-Newtonian second-order fluid over an 

enclosed torsionally oscillating discs in the presence of the magnetic field and calculated successfully the steady 

and unsteady part both of the flow and energy functions. The flow and energy functions are expanded in the 

powers of the amplitude  (assumed to be small) of the oscillations of the disc. The non-Newtonian effects are 
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exhibited through two dimensionless parameters𝜏1  =
𝑛𝜇2

𝜇1
  and𝜏2  =

𝑛𝜇3

𝜇1
 , where 𝜇1, 𝜇2, 𝜇3 are coefficient of 

Newtonian viscosity, elastico-viscosity and cross-viscosity respectively, 𝑛 being the uniform frequency of the 

oscillation. The variation of temperature distribution with elastico-viscous parameter𝜏1, cross-viscous parameter 

𝜏2(based on the relation 𝜏1 = 𝛼𝜏2where  =  −0.2 as for 5.46% poly-iso-butylene type solution in cetane at 

30𝐶 (Markowitz [18]), Reynolds number 𝑅, magnetic field ‘𝑚’ at different phase difference𝜏  is shown 

graphically.   

 

II.   FORMULATION OF THE PROBLEM 
The constitutive equation of an incompressible second-order fluid as suggested by Colemann and Noll [19] can 

be written as: 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇1𝑑𝑖𝑗 + 2𝜇2𝑒𝑖𝑗 + 4𝜇3𝑐𝑖𝑗        (1) 

where 

𝑑𝑖𝑗  =
 1

2
(𝑢𝑖 ,𝑗 + 𝑢𝑗 ,𝑖), 𝑒𝑖𝑗 =

1

2
 𝑎𝑖 ,𝑗 + 𝑎𝑗 ,𝑖 + 𝑢,𝑖

𝛼𝑢𝛼 ,𝑗 𝑐𝑖𝑗 =  𝑑𝑖𝛼𝑑𝑗
𝛼       (2) 

p is the hydrostatic pressure, 𝜏𝑖𝑗  is the stress-tensor, 𝑑𝑖𝑗  is rate of deformation (rate of strain or flow) tensor, 𝑢𝑖  

and 𝑎𝑖   are the velocity and acceleration vector. 

The equation (1) together with the momentum equation for no extraneous force 

𝜌  
𝜕𝑢𝑖

𝜕𝑥
+ 𝑢𝛼𝑢𝑖 ,𝛼 = 𝜏𝑖 ,𝛼

𝛼                (3) 

and the equation of continuity for incompressible fluid𝑢,𝑖
𝑖 = 0      (4) 

 

where is the density of the fluid and comma (,) represents covariant differentiation, form the set of governing 

equations. 

 In the three dimensional cylindrical set of co-ordinates (𝑟, , 𝑧) the system consists of a finite 

oscillating disc of radius 𝑟𝑠  (coinciding with the plane 𝑧 = 0) performing rotatory oscillations of the type 

r cos of small amplitude𝜖 , about the perpendicular axis 𝑟 = 0 with a constant angular velocity  in an 

incompressible second-order fluid forming the part of a cylindrical casing or housing. The top of the casing 

(coinciding with the plane 𝑧 = 𝑧𝑜 < 𝑟𝑠) may be considered as a stationary disc (stator) placed parallel to and at a 

distance equal to gap length 𝑧0from the oscillating disc. The symmetrical radial steady outflow has a small mass 

rate ‘m’ of radial outflow (‘ − 𝒎’ for net radial inflow). The inlet condition is taken as a simple radial source 

flow along z-axis starting from radius𝑟0. A constant magnetic field 𝐵0 is applied normal to the plane of the 

oscillating disc. The induced magnetic field is neglected.  

 Assuming (u, v, w) as the velocity components along the cylindrical system of axes (r, , z) the 

relevant boundary conditions of the problem are: 

z =  0,   u =  0,     v = 𝑟Ω𝑒𝑖𝜏 (Real part),𝑤 =  0,           𝑇 =  𝑇𝑎  

𝑧 =  𝑧0,   𝑢 =  0,   v =  0,                                  𝑤 =  0,            𝑇 =  𝑇𝑏     (5) 

where the gap 𝑧0is assumed small in comparison with the disc radius 𝑟𝑠 . The velocity components for the 

axisymmetric flow compatible with the continuity criterion can be taken as[1],[2],[3].   

𝑈 = −𝜉𝐻′ 𝜁, 𝜏 +  
𝑅𝑚

𝑅𝑧
 

𝑀′ 𝜁 ,𝜏 

𝜉
, 𝑉 = 𝜉𝐺 𝜁, 𝜏 +  

𝑅𝐿

𝑅𝑧
 

𝐿 𝜁 ,𝜏 

𝜉
 , 𝑊 = 2𝐻 𝜁, 𝜏     (6) 

and for the temperature, we take 

T = Tb +  
ν1Ω

Cv
  ϕ ζ, τ + ξ

2
ψ ζ, τ          (7) 

WhereU =
u

Ωz0
, V =

v

Ωz0
, W =

w

Ωz0
, ξ =

r

z0
, 𝜁, 𝜏are dimensionless quantities and H ,  , G ,  , L ,  , M’ ,  ,

(, ),(, ) are dimensionless function of the dimensionless variables ζ =
z

z0
and τ = nt. 

𝑅𝑚 =
𝑚

2𝜋𝜌 𝑧0𝜈1
, 𝑅𝑚 =

𝐿

2𝜋𝜌 𝑧0𝜈1
are dimensionless number to be called the Reynolds number of net radial outflow 

and circulatory flow respectively. 𝑅𝑧  =
Ω𝑧0

2

𝜈1
 be the flow Reynolds number. The small mass rate ‘𝒎’ of the 

radial outflow is represented by𝒎 = 2𝜋𝜌  𝑟𝑢𝑑𝑧
𝑧0

0
       (8) 

Using expression (6) and (7), the boundary condition (5) transform for 𝐺, 𝐿&𝐻 into the following form: 

𝐺 0,  =  𝑅𝑒𝑎𝑙 𝑒𝑖𝜏 , 𝐺(1, ) =  0, 𝐿 0,  = 0, 𝐿 1,  = 0,𝐻 0,  = 0,

𝐻 1,  = 0,𝐻′ 0,  = 0,     𝐻′ 1,  =  0,  0,  =
1

𝐸
= 𝑆, (1, )  =  0,(0, )  =  0,   (1, )  =  0 (9) 
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where𝐸  =
Ων1

Cv (Ta−Tb )
  is the Eckert number. 

The conditions on M on the boundaries are obtainable form the expression (8) for m as follows: 

 𝑀 1,  − 𝑀 0,  =  1           (10) 

which on choosing the discs as streamlines reduces to  

 𝑀(1, )  =  1, 𝑀(0, )  =  0           (11) 

 

Using eqs.(1) and expression (6)in equation (3) and neglecting the squares & higher powers of 𝑅𝑚/𝑅𝑧  (assumed 

small), we have the following equations in dimensionless form: 

  

−
1

𝜌𝑧0

𝜕𝑝

𝜕𝜉
= −𝑛Ω𝑧0  𝜉𝐻′ −  

𝑅𝑚

𝑅𝑧
 

𝜕𝑀′

𝜉
 + Ω2𝑧0𝜉  𝐻′

2
− 2𝐻𝐻′′ − 𝐺2 + Ω2𝑧0  

𝑅𝑚

𝑅𝑧
 

2𝐻𝑀′′

𝜉
− Ω2𝑧0  

𝑅𝐿

𝑅𝑧
 

2𝐿𝐺

𝜉
+

𝜈1Ω

𝑧0
 𝐻′′′𝜉 −  

𝑅𝑚

𝑅𝑧
 

𝑀′′′

𝜉
 −

2𝜈2

𝑧0
  

𝑛Ω

2
 
𝑅𝑚

𝑅𝑧
 

𝜕𝑀′′′

𝜉
− 𝜉𝐻′′′ + Ω2𝜉  𝐻′′

2
− 𝐻𝐻𝑖𝑣 +  

𝑅𝑚

𝑅𝑧
 

Ω
2

𝜉
 𝐻′′′𝑀′ + 𝐻′′𝑀′′ + 𝐻′𝑀′′′ +

𝐻𝑀𝑖𝑣−𝑅𝐿𝑅𝑍2Ω2𝜉𝐿′𝐺′+𝐿𝐺′′−4𝜈3Ω2𝑧0𝑅𝑚𝑅𝑧12𝜉𝐻′′′𝑀′+𝐻′′𝑀′′+𝐻′𝑀′′′−𝑅𝐿𝑅𝑧12𝜉2𝐿′𝐺′+𝐿𝐺′′+𝜉4𝐻′′2−𝐺′2−
2𝐻′𝐻′′′+𝜍𝐵02Ω𝑧0𝜌−𝜉𝐻′+𝑅𝑚𝑅𝑧𝑀′𝜉        (12) 

0 = −𝑛Ω𝑧0  𝜉𝜕𝐺 +  
𝑅𝐿

𝑅𝑧
 

𝜕𝐿

𝜉
 − 2Ω2𝑧0𝜉 𝐻𝐺 ′ − 𝐻′𝐺 − Ω2𝑧0  

𝑅𝑚

𝑅𝑧
 

2𝑀′𝐺

𝜉
− Ω2𝑧0  

𝑅𝐿

𝑅𝑧
 

2𝐻𝐿′

𝜉
+

𝜈1Ω

𝑧0
 𝜉𝐺 ′′ +

𝑅𝐿𝑅𝑧𝐿′′𝜉+2𝜈2𝑧0𝑛Ω2𝜉𝐺′′+𝑅𝐿𝑅𝑧𝜕𝐿′′𝜉+𝑅𝐿𝑅𝑧Ω2𝜉𝐻′′𝐿′+𝐻′′′𝐿+𝐻𝐿′′′+𝐻′𝐿′′+Ω2𝜉𝐻𝐺′′′−𝐻′′𝐺′+𝑅𝑀𝑅𝑧2Ω2𝜉𝑀′𝐺
′′+𝑀′′𝐺′+2𝜈3Ω2𝑧0𝜉𝐻′𝐺′′−𝐻′′𝐺′+𝑅𝐿𝑅𝑧1𝜉𝐻′′𝐿′+𝐻′′′𝐿+𝐻′𝐿′′+𝑅𝑀𝑅𝑧1𝜉2𝑀′′𝐺′+𝑀′𝐺′′−𝜍𝐵02Ω𝑧0𝜌𝜉𝐺+𝑅𝐿𝑅𝑧𝐿𝜉
         (13) 

 

− 
1

𝜌𝑧0

  
𝜕𝑝

𝜕𝜁
 = 2𝑛Ω𝑧0𝜕𝐻 + 4Ω2𝑧0𝐻𝐻′ − 2𝜈1

Ω𝐻′′

𝑧0

−
2𝜈2

𝑧0

 𝑛Ω𝜕𝐻′′ + 2Ω2𝜉2 𝐻′′𝐻′′′ + 𝐺 ′𝐺 ′′ + Ω2 22𝐻′𝐻′′ + 2𝐻𝐻′′′ 

−  
𝑅𝑀

𝑅𝑧

 2Ω2 𝐻′′𝑀′′′ + 𝐻′′′𝑀′′ +  
𝑅𝐿

𝑅𝑧

 2Ω2 𝐿′𝐺 ′′ + 𝐿′′𝐺 ′  

−
2𝜈3Ω2

𝑧0

 𝜉2 𝐻′′𝐻′′′ + 𝐺 ′𝐺 ′′ + 14𝐻′𝐻′′ −  
𝑅𝑀

𝑅𝑧

  𝐻′′𝑀′′′ + 𝐻′′′𝑀′′ +  
𝑅𝐿

𝑅𝑧

  𝐿′𝐺 ′′ + 𝐿′′𝐺 ′   

  (14) 

𝜌𝐶𝑣  
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
 = 𝐾  

𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
 +

𝜕2𝑇

𝜕𝑧2 + Φ     (15) 

WhereΦ = 𝜏𝑗
𝑖𝑑𝑖

𝑗
           (16) 

𝐶𝑣is the specific heat at constant volume,  be the viscous-dissipation function,𝜏𝑗
𝑖  is the mixed deviatoric stress 

tensor, 𝐾 is the thermal conductivity,  is the density of the fluid; B0 and  are intensity of the magnetic field 

and conductivity of the fluid considered.   

Differentiating (12) w.r.t.  and (14 ) w.r.t.  and then eliminating 
2
p/.from the equation thus obtained. We 

get   

-nz0{H’’–(Rm/Rz)M’’/}–2
2
z0(HH’’’+GG’)+(Rm/Rz)(2

2
z0/) (H’M’’+HM)–

(RL/Rz)(2
2
z0/)(LG’+L’G)-(1/z0){(Rm/Rz)(M

iv
/)–H

iv
}– (22/z0) [(n/2){(Rm/Rz)(M

iv
/) – 

H
iv

}-
2
(2H’’H’’’+H’H

iv
+HH

v
+4G’G’’)+ 

(Rm/Rz)(
2
/)(2H’’’M’’+H

iv
M’+2H’’M’’’+2H’M

iv
+HM

v
)–(RL/Rz)(2

2
/) (2L’G’’+L’’G’+LG’’’)]–

(23
2
/z0){(Rm/Rz)(1/)(H

iv
M’+2H’’’M’’+2H’’M’’’+ H’M

iv
) -(RL/Rz)(1/)(3L’G’’+2L’’G’+LG’’’)–

(H’H
iv

+ 3G’G’’+2H’’H’’’)} +(B0
2
z0/){-H+(Rm/Rz)(M/)}= 0       

     (17) 

On equating the coefficients of  and 1/ from the equation (13) & (17), we get the following equations:  

 G’’ = RG + 2R(HG’–H’G)–1G’’-21(HG’’’-H’’G’)-22(H’G’’-H’’G’)+m
2
G    (18) 

 L’’ = RL+2R(M’G + HL’)-1L’’-21(H’’L’+H’’’L+HL’’’+H’L’’+2M’G’’+  2M’’G’)-22 

(H’’L’+H’’’L+H’L’’+2M’’G’+M’G’’) +m
2
L         (19) 

 H
iv
 = RH’’+2R(HH’’’+GG’)-1H

iv
-21(H’H

iv
+HH

V
+2H’’H’’’+4G’G’’)- 22  (H’H

iv
+ 

2H’’H’’’+3G’G’’)+m
2
H’’        (20) 

 M
iv
 = RM’’+2R(H’M’’+HM’’’-LG’-L’G)-1M

iv
-21(2H’’’M’’+H

iv
M’ +  2H’’M’’’ +2H’M

iv
+ 

HM
v
-4L’G’’-2L’’G’-2LG’’’)-22(H

iv
M’+2H’’’M’’+ 2H’’M’’’+H’M

iv
-3L’G’’-2L’’G’-LG’’’)  
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+m
2
M’’  (21)     

where R (=nz0
2
/1) is the Reynolds number, 1(=n2/1), 2(=n3/1) and (=/n) are the dimensionless 

parameter, m
2
 = B0

2
z0

2
/1 is the dimensionless magnetic field and Rm/RL = m/L 1. 

Using (7), (16) in (15) and equating the cofficient of 
2
 and independent term of 

2
, we get  

’’=  RPr[/- 2H’+2H’-H’’
2
-G’

2
-1(H’’H’’+G’G’) – 21(H’H’’

2
+ H’G’

2
+HH’’H’’’ +HG’G’’)– 

32(H’H’’
2
+H’G’

2
)],          (22) 

4+’’ = RPr [/ + (Rm/Rz)2M’ + 2H’-12H’
2
+( Rm/Rz)2H’’M’’-( RL/Rz) 2L’G’-1{12H’H’- 

(Rm/Rz)(H’’M’’+M’’H’’) + (RL/Rz)(G’L’)}]    (23) 

where Pr (=1Cv/K) is the Prandtl number. 

 

III. SOLUTION OF THE PROBLEM 
Substituting the expressions  

G(,) = 
N
 GN (,);  L(,) = 

N
 LN (,);  H(,) = 

N
 HN (,); M(,) = 

N
 MN (,)                     (24) 

into (18) to (23) neglecting the terms with coefficient of 
2
 (assumed negligible small) and equating the terms 

independent of  and coefficient of , we get the following equations: 

 G0’’ = R G0/ - 1G0’’/ + m
2
G0      (25) 

 G1’’ = R G1/-2R(H0’G0’-H0G0’)-1G1’’/-21(H0G0’’’-H0’’G0’)-22(H0’G0’’- H0’’G0’) + m
2
G1(26) 

 L0’’ = R L0/ - 1L0’’/+ m
2
L0     (27) 

 L1’’ = RL1/-2R(M0’G0 + H0L0’)-1L1’’/-21(H0’’’L0+H0’’L0’+H0’L0’’ +H0L0’’’+2M0’’G0’+  

2M0’G0’’)-22(H0’’’L0+H0’’L0’+H0’L0’’+2M0’’G0’ +M0’G0’’) + m
2
L1(28) 

H0
iv
 = RH0’’/ - 1H0

iv
/ + m

2
H0’’             (29) 

H1
iv
 = RH1’’/+2R(H0H0’’’+G0G0’)-1H1

iv
/-21(H0’H0

iv
+H0H0

v
+2H0’’H0’’’  +4G0’G0’’)- 

22(3G0’G0’’+H0’H0
iv

+2H0’’H0’’’) + m
2
H1’’(30) 

M0
iv
 = R M0’’/ - 1M0

iv
/ + m

2
M0’’     (31) 

M1
iv
 = RM1’’/ + 2R(H0’M0’’+H0M0’’’-L0’G0-L0G0’) - 1M1

iv
/ - 21(2H0’’’M0’’ +H0

iv
M0’+ 

2H0’’M0’’’- 4L0’G0’’-2L0’’G0’-2L0G0’’’+H0M0
v
+  2H0’M0

iv
)-22(2H0’’’M0’’+H0

iv
M0’+ 

2H0’’M0’’’- 3L0’G0’’-2L0’’G0’- L0G0’’’ +H0’M0
iv

) + m
2
M1’’   (32) 

0’’=  RPr0,                                                                              (33) 

1’’ =   RPr[1- 2H0’0+2H00’-H0’’
2
-G0’

2
-1(H0’’H0’’+G0’G0’),      (34)     

40+0’’ = RPr0,                                                                       (35) 

41+1’’ = RPr [1 + (Rm/Rz)2M0’0 + 2H00’-12H0’
2
+( Rm/Rz)2H0’’M0’’- (RL/Rz)2L0’G0’-1{12H0’H0’- 

(Rm/Rz)(H0’’M0’’+M0’’H0’’) + (RL/Rz)(G0’L0’)} ].                                  (36) 

Taking  Gn(,)= Gns()+ e
i
Gnt();  Ln(,)= Lns()+ e

i
Lnt() 

Hn(,)= Hns()+ e
2i

Hnt(); Mn(,)= Mns()+ e
2i

Mnt()    (37) 

Complex notation has been adopted here with the convention that only real parts of the complex quantities have 

the physical meaning. 

Using (19) and (28), the boundary conditions (8) & (10) for n = 0, 1 transforms to 

G0s(0) =0, G0t(0) = 1,        G1s(0) =0, G1t(0) = 0, G0s(1) =0,  G0t(1) = 0,        G1s(1) 

=0, G1t(1) = 0, H0s(0) =0 H0t(0) = 0,        H1s(0) =0, H1t(0) = 0, 

H0s(1) =0, H0t(1) = 0,        H1s(1) =0, H1t(1) = 0, H’0s(0) =0,  H’0t(0) = 0,       H’1s(0) 

=0, H’1t(0) = 0, H’0s(1) =0, H’0t(1) = 0,      H’1s(1) =0, H’1t(1) = 0, 

L0s(0) =0, L0t(0) = 0,        L1s(0) =0, L1t(0) = 0, L0s(1) =0,  L0t(1) = 0,        L1s(1) 

=0, L1t(1) = 0, M’0s(0) =0, M’0t(0) = 0,      M’1s(0) =0, M’1t(0) = 0, 

M’0s(1) =0, M’0t(1) = 0,      M’1s(1) =0, M’1t(1) = 0, M0s(0) =0,  M0t(0) = 0,       M1s(0) 

=0, M1t(0) = 0, M0s(1) =1, M0t(1) = 0,       M1s(1) =0, M1t(1) = 0.     

0s(0) = 0, 0t(0) = 0,      1s(0) =0, 1t(0) = 0,            0s(1) = 0,  0t(1) = 0,       1s(1) 

=0, 1t(1) = 0,           0s(0) = S, 0t(0) = 0,      1s(0) =0, 1t(0) = 0, 

0s(1) = 0, 0t(1) = 0,       1s(1) =0, 1t(1) = 0,                  (38) 

G0s() = G1s() = G1t() = 0,  G0t() = {1-(e
f
/2Sinh f)}e

f
+ (e

f
/2Sinh f)}e

-f
, 

where f = {(iR+m
2
)/(1+I1)}

1/2
 =  A+ iB, 

where  A = [[(m
2
+R1)+{(m

2
+R1)

2
+(R-m

2
1)

2
}]/{2(1+1

2
)}]

1/2
, 

B = [[{(m
2
+R1)

2
+(R-m

2
1)

2
}- (m

2
+R1)]/{2(1+1

2
)}]

1/2
, 

 G0(,) = Real{e
i
 G0t()} = (A3+A5)Cos - (A4+A6)Sin, 

where  A1 = e
A
(Cos

2
BSinhA+CoshASin

2
B)/{2(Sinh

2
A+Sin

2
B)}, 

 A2 = e
A
(SinBCosBSinhA-CosBCoshASinB)/{2(Sinh

2
A+Sin

2
B)}, 

A3 = e
A

{(1-A1)CosB+A2SinB}, A4 = e
A

{(1-A1)SinB-A2CosB}, 
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A5 = e
-A

{A1CosB+A2SinB},   A6 = e
-A

{A2CosB-A1SinB}, 

G(,) = G0(,) + G1(,).  

M0s() = C1e
m

/m
2
+C2e

-m
/m

2
+C3+C4,M’0s() = C1e

m
/m-C2e

-m
/m+C3, 

Where C1 = C2(e
-m

-1)/(e
m

-1), C2 = m
2
(e

m
-1)/{4+e

m
(m-2)-e

-m
(m+2)},C3 = -(C1-C2)/m,C4 = (C1+C2)/m

2
. 

M0t() = M1s() = M1t() = 0, M(,) = M0(,) + M1(,) = M0(,).   

 

H0s() = H0t() = H1s() = 0, 

H1t() = C1e
d

/d2+C2e
-d

/d2+C3+C4+(Z1-f
2
Z2)[{1-(e

f
/2Sinhf)}2e

f
/4f-e

2f
(1-)/  (16fSinh

2
f)], 

where  d = {(2iR+m
2
)/(1+2i1)}

1/2
 =  C+ iD, 

where  C = [[(m
2
+4R1)+{(m

2
+4R1)

2
+(2R-2m

2
1)

2
}]/{2(1+41

2
)}]

1/2
,
 

D = [[{(m
2
+4R1)

2
+(R-4m

2
1)

2
}- (2m

2
+2R1)]/{2(1+41

2
)}]

1/2
, 

Z1 = 2R/{(1+I1)(4f
2
-d

2
)},  Z2 = (81+62) /{(1+I1)(4f

2
-d

2
)}, C1 = {d(Z10-Z9-Z6+Z5+C2(e

-d
-1)}, 

C2 = Z11/{4-e
-d

(d+2)+e
d
(d-2)}, C3 = -{(C1/d)-(C2/d)+Z5-Z6}, C4 = -{(C1/d

2
)+(C2/d

2
)+Z3-Z4}, 

Z3 = Z1[{1-(e
f
/2Sinhf)}

2
/4f-fe

2f
/16fSinh

2
f],  Z4 = Z2[f{1-(e

f
/2Sinhf)}

2
/4-fe

2f
/16Sinh

2
f], 

Z5 = Z1[{1-(e
f
/2Sinhf)}

2
/2+e

2f
/8Sinh

2
f],  Z6 = Z2[f

2
{1-(e

f
/2Sinhf)}

2
/2+f

2
e

2f
/8Sinh

2
f], 

Z7 = Z1[e
2f

{1-(ef/2Sinhf)}
2
/4f-1/16fSinh

2
f],  Z8 = Z2[fe

2f
{1-(e

f
/2Sinhf)}

2
/4-f/16Sinh

2
f], 

Z9 = Z1[e
2f

{1-(e
f
/2Sinhf)}

2
/2+1/8Sinh

2
f],  Z10 = Z2[f

2
e

2f
{1-(e

f
/2Sinhf)}

2
/2+f

2
/8Sinh

2
f], 

H1(,) = Real{e
2I

 H1t()} = (A81+A89)Cos2 - (A82+A90)Sin2, 

where  A13 = 4A
2
-4B

2
-C

2
+D

2
,A14 = 8AB-2CD, A15 = 2R(A13-1A14)/{(A13-1A14)

2
+(1A13+A14)

2
}, 

A16 = -2R(A131+A14) /{(A13-1A14)
2
+(1A13+A14)

2
},A17 = (81+62)(A13-21A14)/{(A13-21A14)

2
+(21A13+A14)

2
}, 

A18 = -(81+62)(21A13+A14)/{( A13-21A14)
2
+(21A13+A14)

2
},A19 = [A{(1-A1)

2
-A2

2
}+2BA2(1-A1)]/{4(A

2
+B

2
)},  

A20 = -[B{(1-A1)
2
-A2

2
}+2AA2(1-A1)]/{4(A

2
+B

2
)},A21 = Sinh

2
ACos

2
B-Cosh

2
ASin

2
B, 

A22 = 2SinhACosBCoshASinB,A23 = e
2A

(A21Cos2B+A22Sin2B)/(A21
2
+A22

2
), 

A24 = e
2A

(A21Sin2B- A22Cos2B)/(A21
2
+A22

2
),A25 = (AA23+BA24)/{16(A

2
+B

2
)},A26 = (AA24-BA23)/{16(A

2
+B

2
)}, 

A27 = A15(A19-A25)-A16(A20-A26), A28 = A16(A19-A25)+A15(A20-A26), B1 = (1-A1)
2
-A2

2
, B2 = -2(1-A1)A2, 

X1 = (A
2
-B

2
)(A17A27-A18A28)-2AB(A18A27+A17A28),   

X2 = 2AB(A17A27-A18A28)+(A
2
-B

2
)(A18A27+A17A28), 

A29 = (X1A15+X2A16)/(A15
2
+A16

2
), A30 = (X2A15-X1A16)/(A15

2
+A16

2
),  

A31 = A15{(B1/2)+(A23/8)}- A16{(B2/2)+(A24/8)}, A32 = A16{(B1/2)+(A23/8)}+ A15{(B2/2)+(A24/8)}, 

X3 = (A
2
-B

2
)(A17A31-A18A32)-2AB(A18A31+A17A32),X4 = 2AB(A17A31-A18A32)+ (A

2
-B

2
)(A18A31+A17A32), 

A33 = (X3A15+X4A16)/(A15
2
+A16

2
),A34 = (X4A15-X3A16)/(A15

2
+A16

2
),A35 = e

2A
(A19Cos2B-A20Sin2B), 

A36 = e
2A

(A20Cos2B+A19Sin2B), A37 = (AA21-BA22)/[16{(AA21-BA22)
2
+(BA21+AA22)

2
}], 

A38 = -(BA21+AA22)/[16{(AA21-BA22)
2
+(BA21+AA22)

2
}], A39 = A15(A35-A37)-A16(A36-A38), 

A40 = A16(A35-A37)+A15(A36-A38), X5 = (A
2
-B

2
)(A17A39-A18A40)-2AB(A18A39+A17A40),  

X6 = 2AB(A17A39-A18A40)+(A
2
-B

2
)(A18A39+A17A40), A41 = (X5A15+X6A16)/(A15

2
+A16

2
), 

A42 = (X6A15-X5A16)/(A15
2
+A16

2
), A43 = e

2A
(B1Cos2B-B2Sin2B)/2,A44 = e

2A
(B2Cos2B+B1Sin2B)/2, 

A45 = A21/{8(A21
2
+A22

2
)},  A46 = -A22/{8(A21

2
+A22

2
)},  A47 = A15(A43+A45)-A16(A44+A46), 

A48 = A16(A43+A45)+A15(A44+A46),X7 = (A
2
-B

2
)(A17A47-A18A48)-2AB(A18A47+A17A48), 

X8 = 2AB(A17A47-A18A48)+ (A
2
-B

2
)(A18A47+A17A48),A49 = (X7A15+X8A16)/(A15

2
+A16

2
), 

A50 = (X8A15-X7A16)/(A15
2
+A16

2
), A51 = (C

2
-D

2
)(e

C
CosD-1)-2CDe

C
SinD, 

A52 = 2CD(e
C
CosD-1)+ (C

2
-D

2
)e

C
SinD, 

A53 = C(e
C
CosD-C-1)-D(e

C
SinD-D),A54 = D(e

C
CosD-C-1)+C(e

C
SinD-D),A55 = A27-A29+A31-A33-A39+A41, 

A56 = A28-A30+A32-A34-A40+A42,A57 = A49-A47-A33+A31,A58 = A50-A48-A34+A32, 

A59 = A51A55-A52A56-A53A57+A54A58,A60 = A52A55+A51A56-A54A57-A53A58, 

A65 = 4-e
-C

{(C+2)CosD+DsinD}+e
C
{(C-2)CosD-DsinD},  

A66 = -e
-C

{DcosD-(C+2)CosD}+e
C
{(C-2)SinD+DcosD}, 

A67 = (A59A65+A60A66)/(A65
2
+A66

2
),A68 = (A60A65-A59A66)/(A65

2
+A66

2
), 

A69 = CA57-DA58+A67(e
-C

cosD-1)+A68e
-C

SinD,A70 = DA57+CA58+A68(e
-C

cosD-1)-A67e
-C

SinD, 

A71 = {A69(e
C
CosD-1)+A70e

C
SinD}/{(e

C
CosD-1)

2
+e

2C
Sin

2
D}, 

A72 = {A70(e
C
CosD-1)-A69e

C
SinD}/{(e

C
CosD-1)2+e

2C
Sin

2
D}, 

A73 = -[{(CA71+DA72-CA67-DA68)/(C
2
+D

2
)}+A31-A33],A74 = -[{(CA72-DA71-CA68+DA67)/(C

2
+D

2
)}+A32-A34], 

A75 = {A71(C
2
-D

2
)+2CDA72}/{(C

2
-D

2
)

2
+4C

2
D

2
},A76 = {A72(C

2
-D

2
)-2CDA71}/{(C

2
-D

2
)

2
+4C

2
D

2
}, 

A77 = {A67(C
2
-D

2
)+2CDA68}/{(C

2
-D

2
)

2
+4C

2
D

2
},A78 = {A68(C

2
-D

2
)-2CDA67}/{(C

2
-D

2
)

2
+4C

2
D

2
}, 

A79 = -(A75+A77+A27-A29),A80 = -(A76+A78+A28-A30), 

A81 = e
C

(A75CosD-A76SinD)+e
-C

(A77CosD+A78SinD)+A73+A79, 

A82 = e
C

(A76CosD+A75SinD)+e
-C

(A78CosD-A77SinD)+A74+A80, 

A83 = A15-(A
2
-B

2
)A17+2ABA18,A84 = A16-(A

2
-B

2
)A18-2ABA17,A85 = e

2A
(A19Cos2B-A20Sin2B), 

A86 = e
2A

(A20Cos2B+A19Sin2B),A87 = e
2A(1-)

{A37Cos2B(1-)-A38Sin2B(1-)}, 
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A88 = e
2A(1-)

{A38Cos2B(1-)+A37Sin2B(1-)}, 

A89 = A83(A85-A87)-A84(A86-A88),A90 = A84(A85-A87)+A83(A86-A88), 

H(,) = H0(,) + H1(,) = H1(,)  

  

L0s() = L0t() = L1s() = 0 

L1t() = C5e
f

+C6e
-f

+{3e
(m+f)

+7e
-(m+f)

}/(m
2
+2mf)+ {4e

-(m-f)
+ 6e

(m-f)
}/ (m

2
-2mf)+(/2f)(5e

f
-8e

-f
)- 

(5e
f

+8e
-f

)/4f
2
, 

where C5 = -[C6+{(3+7)/(m
2
+2mf)}+ {(4+6)/(m

2
-2mf)}-{(5+8)/(4f

2
)}], 

C6 = [[3{e
(m+f)

-e
f
}+{7e

-(m+f)
-e

f
}]/(m

2
+2mf)+[4{e

-(m-f)
-e

f
}+{6e

(m-f)
-e

f
}]/(m

2
-2mf)+ 

(5e
f
-8e

-f
)/2f+8Sinhf/2f

2
]/(2Sinhf), 

1 = 1-(e
f
/2Sinhf), 2 = e

f
/2Sinhf, 

3 = {2RC11/m(1+I1)}-{4(1+2)C11f/(1+I1})-{(41+22)C11f
2
/m(1+I1)}, 

4 = -{2RC21/m(1+I1)}-{4(1+2)C21f/(1+I1})+{(41+22)C21f
2
/m(1+I1)}, 

5 = {2RC31/(1+I1)}-(41+22)C21f
2
/(1+I1), 

6 = {2RC12/m(1+I1)}+{4(1+2)C12f/(1+I1})-{(41+22)C12f
2
/m(1+I1)}, 

7 = -{2RC22/m(1+I1)}+{4(1+2)C22f/(1+I1})+{(41+22)C22f
2
/m(1+I1)}, 

8 = {2RC32/(1+I1)}-(41+22)C32f
2
/(1+I1), 

L1(,) = Real{e
i
 L1t()} = (B47+B51+B55+B59-B63)Cos - (B48+B52+B56+B60-B64)Sin2, 

where B3 = 1/(1+1
2
), B4 = -1/(1+1

2
), 

B5 = (2RC1/m){B3(1-A1)+B4A2}-4(1+2)C1{(1-A1)(AB3-BB4)+A2(AB4+BB3)}-{(41+22)C1/m}[(A
2
-B

2
) 

{B3(1-A1)+B4A2}-2AB{B4(1-A1)-B3A2}], 

B6 = (2RC1/m){B4(1-A1)-B3A2}-4(1+2)C1{(1-A1)(AB4+BB3)+A2(AB3-BB4)}-{(41+22)C1/m}[2AB 

{B3(1-A1)+B4A2}+(A
2
-B

2
){B4(1-A1)- B3A2}], 

B7 = -(2RC2/m){B3(1-A1)+B4A2}-4(1+2)C2{(1-A1)(AB3-BB4)+A2(AB4+BB3)}+{(41+22)C2/m}[(A
2
-B

2
) 

{B3(1-A1)+B4A2}-2AB{B4(1-A1)-B3A2}], 

B8 = -(2RC2/m){B4(1-A1)-B3A2}-4(1+2)C2{(1-A1)(AB4+BB3)+A2(AB3-BB4)} +{(41+22)C2/m}[2AB 

{B3(1-A1)+B4A2}+(A
2
-B

2
){B4(1-A1)- B3A2}], 

B9 = 2RC3{B3(1-A1)+B4A2}-(41+22)C3[(A
2
-B

2
){B3(1-A1)+B4A2}- 2AB{B4(1-A1)-B3A2}], 

B10 = 2RC3{B4(1-A1)-B3A2}-(41+22)C3[2AB{B3(1-A1)+B4A2}+(A
2
-B

2
){B4(1-A1)-B3A2}], 

B11 = (2RC1/m)(B3A1-B4A2)+4(1+2)C1{A(B3A1-B4A2)-B(B4A1+B3A2)} -{(41+22)C1/m}{(B3A1-B4A2) 

(A
2
-B

2
)-2AB(B4A1+B3A2)}, 

B12 = (2RC1/m)(B4A1+B3A2)+4(1+2)C1{B(B3A1-B4A2)+A(B4A1+B3A2)} -{(41+22)C1/m}{(B3A1-B4A2) 

2AB+(A
2
-B

2
)(B4A1+B3A2)}, 

B13 = -(2RC2/m)(B3A1-B4A2)+4(1+2)C2{A(B3A1-B4A2)-B(B4A1+B3A2)}+{(41+22)C2/m} 

{(B3A1-B4A2)(A
2
-B

2
)-2AB(B4A1+B3A2)}, 

B14 = -(2RC2/m)(B4A1+B3A2)+4(1+2)C2{B(B3A1-B4A2)+A(B4A1+  B3A2)}+{(41+22)C2/m} 

{(B3A1-B4A2)2AB+(A
2
-B

2
)(B4A1+B3A2)}, 

B15 = 2RC3{B3A1-B4A2}-(41+22)C3{(A
2
-B

2
)(B3A1-B4A2)-2AB(B4A1+B3A2)], 

B16 = 2RC3{B4A1+B3A2}-(41+22)C3{(B3A1-B4A2)2AB+(A
2
-B

2
)(B4A1+B3A2)], 

Y1 = B5CosB(e
(m+A)

-e
A
)- B6SinB(e

(m+A)
-e

A
), Y2 = B6CosB(e

(m+A)
-e

A
)+ B5SinB(e

(m+A)
-e

A
), 

Y3 = B13CosB(e
-(m+A)

-e
A
)+ B14SinB(e

-(m+A)
+e

A
), Y4 = B14CosB(e

-(m+A)
-e

A
)- B13SinB(e

-(m+A)
+e

A
), 

B17 = (Y1+Y3),  B18 = (Y2+Y4), Y5 = (e
-(m-A)

-e
A
)(B7CosB-B8SinB),Y6 = (e

-(m-A)
-e

A
)(B8CosB+B7SinB), 

Y7 = B11CosB(e
(m-A)

-e
A
)+B12SinB(e

(m-A)
+e

A
), Y8 = B12CosB(e

(m-A)
-e

A
)-B11SinB(e

(m-A)
+e

A
), 

B19 = (Y5+Y7), B20 = (Y6+Y8), B21 = (m
2
+2mA)/{(m

2
+2mA)

2
+4m

2
B

2
},B22 = -2mB/{(m

2
+2mA)

2
+4m

2
B

2
}, 

B23 = (m
2
-2mA)/{(m

2
-2mA)

2
+4m

2
B

2
}, B24 = 2mB/{(m

2
+2mA)

2
+4m

2
B

2
}, 

B25 = e
A
(B9CosB-B10SinB)- e

-A
(B15CosB+B16SinB), B26 = e

A
(B10CosB+B9SinB)- e

-A
(B16CosB-B15SinB), 

B27 = (AB25+BB26)/{2(A
2
+B

2
)}, B28 = (AB26-BB25)/{2(A

2
+B

2
)}, B29 = B15SinhACosB-B16CoshASinB, 

B30 = B16SinhACosB+B15CoshASinB, B31 = {B29(A
2
-B

2
)+2B30AB}/[2{(A

2
-B

2
)

2
+4A

2
B

2
}], 

B32 = {B30(A
2
-B

2
)-2B29AB}/[2{(A

2
-B

2
)

2
+4A

2
B

2
}], B33 = B17B21-B18B22,  B34 = B18B21+B17B22, 

B35 = B19B23-B20B24, B36 = B20B23+B19B24, 

B37 = {(B33+B35+B27+B31)SinhACosB+(B34+B36+B28+B32)CoshASinB}/2(Sinh
2
ACos

2
B+ Cosh

2
ASin

2
B)}, 

B38 = {(B34+B36+B28+B32)SinhACosB-(B33+B35+B27+B31)CoshASinB}/ {2(Sinh
2
ACos

2
B+ Cosh

2
ASin

2
B)}, 

B39 = B21(B5+B13)-B22(B6+B14), B40 = B22(B5+B13)+B21(B6+B14), B41 = B23(B7+B11)-B24(B8+B12), 

B42 = B24(B7+B11)+B23(B8+B12), B43 = {(A
2
-B

2
)(B9+B15)+2AB(B10+B16)}/[4{(A

2
-B

2
)

2
+4A

2
B

2
}], 

B44 = {(A
2
-B

2
)(B10+B16)-2AB(B9+B15)}/[4{(A

2
-B

2
)

2
+4A

2
B

2
}], B45 = -(B37+B39+B41-B43), 

B46 = -(B38+B40+B42-B44), B47 = e
A

(B45CosB-B46SinB)+e
-A

(B37CosB+B38SinB), 

B48 = e
A

(B46CosB+B45SinB)+e
-A

(B38CosB-B37SinB), 
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B49 = e
(m+A)

(B5CosB-B6SinB)+e
-(m+A)

(B13CosB+B14SinB), 

B50 = e
(m+A)

(B6CosB+B5SinB)+e
-(m+A)

(B14CosB-B13SinB), 

B51 = B49B21-B50B22,B52 = B50B21+B49B22,B53 = e
-(m-A)

(B7CosB-B8SinB)+e
(m-A)

(B11CosB+B12SinB), 

B54 = e
-(m-A)

(B8CosB+B7SinB)+e
(m-A)

(B12CosB-B11SinB),B55 = B53B23-B54B24,  

B56 = B54B23+B53B24,B57 = e
A

(B9CosB-B10SinB)-e
-A

(B15CosB+B16SinB), 

B58 = e
A

(B10CosB+B9SinB)-e
-A

(B16CosB-B15SinB),B59 = (AB57+BB58)/{2(A
2
+B

2
)}, 

B60 = (AB58-BB57)/{2(A
2
+B

2
)},B61 = e

A
(B9CosB-B10SinB)+e

-A
(B15CosB+B16SinB), 

B62 = e
A

(B10CosB+B9SinB)+e
-A

(B16CosB-B15SinB),B63 = {B61(A
2
-B

2
)+2ABB62}/[4{(A

2
-B

2
)

2
+4A

2
B

2
}], 

B64 = {B62(A
2
-B

2
)-2ABB61}/[4{(A

2
-B

2
)

2
+4A

2
B

2
}], 

L(,) = L0(,) + L1(,) = L1(,)  

 

0s() = 0t() = 1s() = 0, 

1t() = C1e
q

+C2e
-q

-RPrf
2
(1+I1)[{(1

2
e

2f
+2

2
e

-2f
)/(4f

2
-q

2
)}+(212/q

2
)], 

where  C1 = RPrf
2
(1+I1)[{(1

2
+2

2
)/(4f

2
-q

2
)}+212/q

2
]-C2,     

C2 = {RPrf
2
(1+I1)/2Sinhq}[ [{e

q
(1

2
+2

2
)-( 1

2
e

2f
+2

2
e

-2f
)}/(4f

2
-q

2
)]+  212(e

q
-1)/q

2
], 

q = (2iRPr)1/2 = Q(1+I),   

1(,) = Real{e
2i
1t()}  = (B27-B31)Cos2-(B28-B32)Sin2, 

where  X1 = e
A
(SinhACos

2
B+CoshASin

2
B)/{2(Sinh

2
A+Sin

2
B)},   

X2 = e
A
(SinhACosBSinB-CoshASinBCosB)/{2(Sinh

2
A+Sin

2
B)}, B1 = (1-X1)

2
-X2

2
, B2 = -2X2(1-X1), 

B3 = (X1
2
-X2

2
), B4 = 2X1X2, B5 = A

2
-B

2
-2AB1, B6 = 2AB+1(A

2
-B

2
), 

B7 = (B5SinhQCosQ+B6CoshQSinQ)/(Sinh
2
Qcos

2
Q+Cosh

2
QSin

2
Q), 

B8 = (B6SinhQCosQ-B5CoshQSinQ)/(Sinh
2
Qcos

2
Q+Cosh

2
QSin

2
Q), 

B9 = e
Q
{(B1+B3)CosQ-(B2+B4)SinQ}, B10 = e

Q
{(B1+B3)SinQ+(B2+B4)CosQ}, 

B11 = {e
2A

(B1Cos2B-B2Sin2B)+e
-2A

(B3Cos2B+B4Sin2B)}, 

B12 = {e
2A

(B2Cos2B+B1Sin2B)+e
-2A

(B4Cos2B-B3Sin2B)}, B13 = (4A
2
-4B

2
)/{ (4A

2
-4B

2
)

2
+(8AB-2RPr)

2
}, 

B14 = -(8AB-2RPr) /{ (4A
2
-4B

2
)

2
+(8AB-2RPr)

2
}, B15 = B13(B9-B11)-B14(B10-B12), 

B16 = B14(B9B11)+B13(B10-B12), B17 = {X2(1-X1)-X1X2}/(2RPr), B18 = -{X1(1-X1)+X2
2
}/(2RPr), 

B19 = B17(e
Q
CosQ-1)-B18e

Q
SinQ, B20 = B18(e

Q
CosQ-1)+B17e

Q
SinQ, B21 = RPr{B7(B15+2B19)-

B8(B16+2B20)}/2, B22 = RPr{B8(B15+2B19)+B7(B16+2B20)}/2, B23 = B13(B1+B3)-B14(B2+B4),  

B24 = B14(B1+B3)+B13(B2+B4), 

B25 = RPr{B5(B23+2B17)-B6(B24+2B18)}-B21,  B26 = RPr{B6(B23+2B17)+B5(B24+2B18)}-B22, 

B27 = e
Q

(B25CosQ-B26SinQ)+e
-Q

(B21CosQ+B22SinQ), 

B28 = e
Q

(B26CosQ+B25SinQ)+e
-Q

(B22CosQ-B21SinQ), 

B29 = e
2A

(B1Cos2B-B2Sin2B)+e
-2A

(B3Cos2B+B4Sin2B), 

B30 = e
2A

(B2Cos2B+B1Sin2B)+e
-2A

(B4Cos2B-B3Sin2B), 

B31 = RPr{B5(B29B13-B30B14+2B17)-B6(B30B13+B14B29+2B18)}, 

B32 = RPr{B6(B29B13-B30 

B14+2B17)+B5(B30B13+B14B29+2B18)}, 

(,) = 0(,) +1(,) = 1(,). 

 

0s() = S(1-),0t() = 1s() = 0, 

1t() = C3e
q

+C4e
-q

-2(C1e
q

-C2e
-q

)/q+(C1e
q

+C2e
-q

)/q
2
+4RPrf

2
(1+I1) [{(1

2
e

2f
+2

2
e

-2f
)/(4f

2
-q

2
)

2
}-212/q

4
], 

where  C4 = -(C1e
q
-C2e

-q
)/(qSinhq)-C2/q

2
+{2RPrf

2
(1+I1)/Sinhq}[{1

2
(e

2f
-e

q
)+ 2

2
(e

-2f
-e

q
)/(4f

2
-q

2
)

 2
}+ 

212(e
q
-1)/q

4
], 

C3 = -[(C1+C2)/q
2
+C4+4RPrf

2
(1+I1)[{(1

2
+2

2
)/(4f

2
-q

2
)

 2
}-212/q

4
]], 

1(,) = Real{e
2i
1t()}  = B67Cos2-B68Sin2, 

B33 = SinhQCosQ/(Sinh
2
Qcos

2
Q+ Sin

2
Qcosh

2
Q),B34 = -SinQCoshQ/(Sinh

2
Qcos

2
Q+ Sin

2
Qcosh

2
Q), 

B35 = (B33+B34)/(2Q), B36 = (B34-B33)/(2Q), B37 = e
Q
(B25CosQ-B26SinQ)- e

-Q
(B21CosQ+B22SinQ), 

B38 = e
Q
(B26CosQ+B25SinQ)- e

-Q
(B22CosQ-B21SinQ), B39 = B37B35-B38B36, B40 = B38B35+B37B36, 

B41 = (B11-B9)(B13
2
-B14

2
)-2B13B14(B12-B10), B42 = (B12-B10)(B13

2
-B14

2
)+2B13B14(B11-B9), 

B43 = 2RPr[B7{B41+(B20/(RPr)}-B8{B42-(B19/(RPr)}], B44 = 2RPr[B8{B41+(B20/(RPr)}+B7{B42-(B19/(RPr)}], 

B45 = -B39-{B22/(2RPr)}+B43, B46 = -B40+{B21/(2RPr)}+B44,B47 = (B26+B22)/(2RPr),B48 = -(B25+B21)/(2RPr), 

B49 = B23B13-B24B14-(B18/RPr),B50 = B24B13+B23B14+(B17/RPr),B51 = 4RPr(B5B49-B6B50), 

B52 = 4RPr(B6B49+B5B50),B53 = -(B47+B45+B51),B54 = -(B48+B46+B52), 

B55 = e
Q

(B53CosQ-B54SinQ)+ e
-Q

(B45CosQ+B46SinQ), 

B56 = e
Q

(B54CosQ+B53SinQ)+ e
-Q

(B46CosQ-B45SinQ), 

B57 = e
Q

(B25CosQ-B26SinQ)- e
-Q

(B21CosQ+B22SinQ), 
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B58 = e
Q

(B26CosQ+B25SinQ)- e
-Q

(B22CosQ-B21SinQ), 

B59 = (B57+B58)/Q,B60 = (B58-B57)/Q,B61 = B29(B13
2
-B14

2
)-2B13B14B30,B62 = B30(B13

2
-B14

2
)+2B13B14B29, 

B63 = B61-(B18/RPr),B64 = B62+(B17/RPr),B65 = 4RPr(B5B63-B6B64),B66 = 4RPr(B6B63+B5B64), 

B67 = B55-B59+(B28/2RPr)+B65,B68 = B56-B60-(B27/2RPr)+B66, 

(,) = 0(,) +1(,). 

 

Nusselt number at the oscillating and the stator disc are 

 Nub = Qbz0/{K(Ta-Tb)} = -E[N4+{N2(
2
-0

2
)/2}], 

 Nua = Qaz0/{K(Ta-Tb)} = -E[N3+{N1(
2
-0

2
)/2}], 

where  N1 = Q(Y14-Y15-Y16+Y17)+2A(Y18-Y20)+2B(Y19+Y21), 

N2 = Qe
Q
{CosQ(Y14-Y15)-SinQ(Y14+Y15)}- Qe

-Q
{CosQ(Y16-Y17)+SinQ(Y16+Y17)}+2e

2A
{Cos2B(AY18+BY19) 

-Sin2B(BY18-AY19)}-2e
-2A

{Cos2B(AY20-BY21)+Sin2B(BY20+AY21)}, 

N3 = -S+Q(Y1+Y2-Y3+Y4)-(Y5-Y7)/Q+2A(Y9-Y11)+2B(Y10+Y12), 

N4 = -S+Qe
Q
{CosQ(Y1+Y2)+SinQ(Y2-Y1)}-Qe

-Q
{CosQ(Y3-Y4)+SinQ(Y3+Y4)}-(e

Q
/Q)(Y5CosQ+Y6SinQ) 

-e
Q
{CosQ(Y5-Y6)+SinQ(Y5+Y6)}+(e

-Q
/Q)(Y7CosQ+Y8SinQ)-e

-Q
{CosQ(Y7-Y8)+SinQ(Y7+Y8)}+ 

2e
2A

{Cos2B(AY9+BY10)+Sin2B(AY10-BY9)}-2e
-2A

{Cos2B(AY11-BY12)+Sin2B(BY11+AY12)}, 

Y1 = {B53+(B26)/(2RPr)}Cos2-{B54-(B25)/(2RPr)}Sin2, 

Y2 = {-B54+(B25)/(2RPr)}Cos2-{B53+(B26)/(2RPr)}Sin2, 

Y3 = {B45+(B22)/(2RPr)}Cos2-{B46-(B22)/(2RPr)}Sin2, 

Y4 = {B46-(B21)/(2RPr)}Cos2+{B45+(B21)/(2RPr)}Sin2, 

Y5 = (B25+B26)Cos2-(B26-B25)Sin2,Y6 = (B25-B26)Cos2-(B26+B25)Sin2, 

Y7 = (B21+B22)Cos2-(B22-B21)Sin2, Y8 = (B22-B21)Cos2+(B21+B22)Sin2, 

Y9 = [4RPrB5{B1(B13
2
-B14

2
)-2B13B14B2}-4RPrB6{B2(B13

2
-B14

2
)- 2B13B14B1}]Cos2-[4RPrB6{B1(B13

2
-B14

2
) 

-2B13B14B2}-4RPrB5 {B2(B13
2
-B14

2
)+2B13B14B1}]Sin2, 

Y10 = [4RPrB5{-B2(B13
2
-B14

2
)-2B13B14B1}-4RPrB6{B1(B13

2
-B14

2
)- 2B13B14B2]Cos2-[4RPrB6{-B2(B13

2
-B14

2
) 

-2B13B14B1}+4RPrB5 {B1(B13
2
-B14

2
)-2B13B14B2}]Sin2, 

Y11 = [4RPrB5{B3(B13
2
-B14

2
)-2B13B14B4}-4RPrB6{B4(B13

2
-B14

2
)+  2B13B14B3}]Cos2-[4RPrB6{B3(B13

2
-B14

2
) 

-2B13B14B4}+4RPrB5 {B4(B13
2
-B14

2
)+2B13B14B3]Sin2, 

Y12 = [4RPrB5{B4(B13
2
-B14

2
)+2B13B14B3}-4RPrB6{-B3(B13

2
-B14

2
)+  2B13B14B4}]Cos2-[4RPrB6 

{B4(B13
2
-B14

2
)+2B13B14B3}+4RPrB5{-B3(B13

2
-B14

2
)+2B13B14B4]Sin2, 

 

IV. RESULTS AND DISCUSSION 
The variation of the dimensionless temperature (T

*
- T b

*
)/ (T a

*
- T b

*
) with  for different values of 

elastico-viscous parameter  1 = 1, 4, 11; when  = 5,  = 0.02, E = 5, Pr = 4, R = 4, m = 2 at phase difference  

= /3 and 2/3 is shown in fig (1) and fig (2) respectively. It is evident from fig (1) that the temperature 

increases near the lower disc and start decreasing soon rapidly. It is also clear that the dimensionless 

temperature decreases with an increase in elastico-viscous parameter  1 throughout the gap-length. It can be 

seen from fig (2) that the temperature increases with an increase in elastico-viscous parameter  1 near the lower 

disc and decreases near the upper disc. 

 The behaviour of the dimensionless temperature (T
*
- T b

*
)/ (T a

*
- T b

*
) with  for different values of 

Reynolds number R = 1, 5, 9; when  = 5,  = 0.02, E = 5, Pr = 4, elastico-viscous parameter  1 =2, m = 2 at 

phase difference  = /3 and 2/3 is shown in fig (3) and fig (4) respectively. It can be observed from fig (3) that 

the temperature is maximum near the lower disc and increases with an increase in Reynolds number whenever it 

decreases near the upper disc. It is evident from fig (4) that at R = 1, the temperature decreases continuously 

upto = 0.7 approximately and start increasing slowly thereafter. At R = 5 and 9, the temperature decreases near 

the lower disc first then start increasing and attains its maximum value in the first half of the gap-length. It is 

also clear that the temperature increases with an increase with an increase in Reynolds number throughout the 

gap-length. 

 The variation of the dimensionless temperature (T
*
- T b

*
)/ (T a

*
- T b

*
) with  for different values of 

magnetic field parameter m = 1, 3, 5; when  = 5,  = 0.02, E = 5, Pr = 4, elastico-viscous parameter  1 =2, R = 

4 at phase difference  = /3 and 2/3 is shown in fig (5) and fig (6) respectively. It can be evident from fig (5) 

that the temperature attains its maximum value in the first half near the lower disc and increases with an increase 

in magnetic field parameter m. the behaviour of the temperature in fig (6) is reversed to that of fig (5). 

The variation of the Nusselt Number Nua with  for different values of elastico-viscous parameter 1 = 

2, 3, 4; when R = 1, E = 5, Pr = 4, 0 = 5,  = 0.02, m = 2,  = /3 is shown in fig (7). It is clear from this figure 
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that Nusselt number decreases with  throughout the gap-length. It is also seen that Nusselt number increases 

with an increase in elastico-viscous parameter 1 throughout the gap-length.      

The variation of the Nusselt Number Nub with  for different values of elastico-viscous parameter 1 = 

2, 3, 4; when R = 1, E = 5, Pr = 4, 0 = 5,  = 0.02, m = 2,  = /3 is shown in fig (8). It is clear from this figure 

that Nusselt number increases with  throughout the gap-length. It is also seen that Nusselt number decreases 

with an increase in elastico-viscous parameter 1 throughout the gap-length.      

The variation of the Nusselt Number Nua with  for different values of Reynolds number R = 2, 3, 4; 

when 1 = 2, E = 5, Pr = 4, 0 = 5,  = 0.02, m = 2,  = /3 is shown in fig (9). It is clear from this figure that 

Nusselt number decreases with  throughout the gap-length. It is also seen that Nusselt number decreases with 

an increase in Reynolds number R throughout the gap-length.      

The variation of the Nusselt Number Nub with  for different values of Reynolds number R = 2, 3, 4; 

when 1 = 2, E = 5, Pr = 4, 0 = 5,  = 0.02, m = 2,  = /3 is shown in fig (10). It is clear from this figure that 

Nusselt number increases with  throughout the gap-length. It is also seen that Nusselt number decreases with 

an increase in Reynolds number R throughout the gap-length.      

 

 
Fig Fig(1) variation of temperature distribution (T-Tb)/(Ta-Tb) at different elastico-viscous parameter 1 at  = 

/3. 

 

 
Fig(2) variation of temperature distribution T

*
 at different elastico-viscous parameter 

1 at  = 2/3. 

 

Fig(3) variation of temperature distribution (T-Tb)/(Ta-Tb) at different Reynolds number R at  

 = /3.  
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Fig(4) variation of temperature distribution (T-Tb)/(Ta-Tb) at different Reynolds number R at   = 2/3. 

 

 
Fig(5) variation of temperature distribution (T-Tb)/(Ta-Tb) at different magnetic field m at  = /3. 

 

 
Fig(6) variation of temperature distribution (T-Tb)/(Ta-Tb) at different magnetic field m at  = 2/3. 
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Fig(6) variation of temperature distribution (T-Tb)/(Ta-Tb) at different magnetic field m at  = 2/3. 

 

 
Fig(7) variation of Nusselt number Nua at different elastico-viscous parameter 1 at  = /3. 

 

e  

Fig(8) variation of Nusselt number Nub at different elastico-viscous parameter 1 at  = /3. 
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Fig(9) variation of Nusselt number Nua at different Reynolds number R at  = /3. 

 

 
Fig(10) variation of Nusselt number Nub at different Reynolds number R at  = /3. 
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