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I. Introduction 

The method of linear least-squares requires that a straight line be fitted to a set of data points such that the sum 

of squares of the vertical deviations from the points to be minimized ([17]). 

Adrien Merie Legendre(1752-1833) is generally credited for creating the basic ideas of the method of least 

squares. Some people believe that the method was discovered at the same time by Karl F. Gauss (1777-1855), 

Pierre S. Laplace (1749-1827) and others. Furthermore, Markov's name is also included for further development 

of these ideas. In recent years, ([17],[18])an effort have been made to find better methods of fitting curves or 

equations to data, but the least-squares method remained dominant, and is used as one of the important methods 

of estimating the parameters. The least-squares method ([18], [19]) consists of finding those parametersthat 

minimize a particular objective function based on squared deviations.  

It is to be noted that for the least-squares estimation method, we are interested to minimize some function of the 

residual, that is, we want to find the best possible agreement between the observed and the estimated values. To 

define the objective function F, we set up a vector of residualsr y y i mi i
obs

i
est  , , , ,1 2   . (1.1) 

Then the objective function is a sum of squared residuals - the term 'least-squares' derives from this kind of 

function: 
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The objective function is the sum of the squares of the deviations between the observed values and the 

corresponding estimated values ([17],[18]). The maximum absolute discrepancy between observed and 

estimated values is minimized using optimization methods. 

We treated Kaplan-Meier estimates ( KM ti( ) ) ([1],[5]) as the observed values ( yi
obs

) of the objective 

functionand the survivor rate estimates ( S ti( ) ) of exponential distribution models as the estimated value ( yi
est

) 

of the objective functionF ([5]) . We considered the objective function for the models of the form 
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where if  is the number of failures at time ti  and m is the number of failure groups. 

We used the procedure as follows: 

 Note that the Kaplan-Meier method is independent of parameters, so for a particular value of time ti  

we find the value of the Kaplan-Meier estimate KM ti( ) of the survival function. 

 We suppose that the survivor function of Exponential model at time ti is ( ; )iS t a , and with the 

starting value of the parameters 0a , we can find the value of the survivor function 0( ; )iS t a . 

 From the numerical values of the Kaplan-Meier estimates KM ti( ) , and the survivor function ( ; )iS t a  

of theexponential model at time ti , we can evaluate errors ( ; ) ( )i iS t a KM t . 

 The function value with a suitable starting point 0a  is given by 

 0 0( ; ) max ( ; ) ( )i i iF t a S t a KM t
i

  . 

 We have numerical value of the function at initial point 0a  and this function value can be used in 

numerical optimizationsearch methods to find the minimum point 
*a  (optimal value of the parameter a ).  

1. Exponential Distribution Model 

The exponential distribution ([3],[4]) is a very commonly used distribution in reliability and life testing. The 

single-parameter exponential pdf is  

 f t t t( ) exp( ) , ,     0 0 (2.1) 

The reliability (or survivor) function of the exponential distribution is  

 S t F t f x dx

t

( ) ( ) ( )    1 1
0

  (2.2) 

 Or  S t t( ) exp( )  . (2.3) 

 
( )

( )
( )

f t
H t

S t
   (2.4) 

where  parameter is the constant failure-rate, (or hazard rate). Since the hazard rate is constant, therefore it is a 

useful model for lifetime data where used items are to be considered as good-as-new ones. 

 

II. Exponential Distribution Models using Least-Squares Methods and Applying Nelder 

and Meads and Hook and Jeeves Search Methods 
For a practical application of the least-squares estimation method, when partial derivatives of the objective 

function are not available, we considered the data of twenty-one leukemia patients. Nelder and Meads 

([10],[14],[15]) and Hook and Jeeves ([7],[8]) are simplex methods and are useful for optimizing the nonlinear 

programming problems. These are numerical methods without calculating the derivatives of the objective 

function. These methods do not require first partial derivatives (gradients) so may converge very slow or even 

may diverge at all ([8], [9]). The numerical results of Exponential distribution model using Nelder and Mead’s 

and Hooke and Jeeves search methods have been presents in this paper. The results include function values, 

parameter estimates, survivor-rate estimates, Kaplan-Meier estimates ([1], [[5]) and otherinformation. 

Table 1: Comparison of Survival Rate estimates 

Failure 

Time 

(Weeks) 

Number 

of 

Failures 

Nelder and Meads Hook and Jeeves 

Exponential 

Model 
Kaplan Meier 

Exponential 

Model 
Kaplan Meier 

6 3 0.8281428977 0.85714285714   0.8280900288 0.85714285714 

7 1 0.8025205496 0.8067226890 0.8024607779 0.8067226890 

10 1 0.7303126154 0.7529411764 0.7302349115 0.7529411764 

13 1 0.6646016934 0.6901960784 0.6645097687 0.6901960784 

16 1 0.6048032056 0.6274509803 0.6047002489 0.6274509803 
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22 1 0.5008634792 0.5378151260 0.5007462466 0.5378151260 

23 1 0.485367001 0.4481792717 0.4852482322 0.4481792717 

 

Table 2: 
 Nelder and Meads Hook and Jeeves 

Estimates of Parameter 3.1428259611129838E-02 3.1438899999998537E-02 

Optimal Functional value 3.7187729316226603E-03 3.7068960496299763E-03 

 

 
 

 
 

III. Exponential Distribution Models using Least-Squares Methods and ApplyingQuasi 

Newton Methods 
In order to find the parameter estimates of Exponential probability distribution models, we used the Davidon-

Fletcher-Powel (DFP) and the Broyden-Fletcher-Reeves-Shanno (BFGS) optimization methods ([21], [23], 

[25]). 

To apply these optimization methods, we need to find the first partial derivatives of the objective function F of 

eq. (1.3). 
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where 
( )

( )
S t

tS t



   . (4.2) 

Now using eq.(4. 1) and eq.(4.2) and eq. (1.3) in the DFP and in the BFGS optimization method, we  find the 

estimated value of the parameter 
  and other information ([25], [26], [27]). 

 
Table 3: Numerical Results using Quasi –Newton Method 

 DFP BFGS 

Estimates of Parameter(  )  2.96462923265E-2 2.964389273494E-2  

Optimal Functional value(F) 5.05544097205E-03 5.05544162231E-03 

Gradient at      9.7664E-08 -1.2641E-05 

The Variance-Covariance at   8.13899E-04 8.13962E-04 

 
IV. Conclusion 

The Survival rate estimates for the 21 Leukemia patients for the period of 35 week under observations 

were compared using Kaplan Meier estimation and exponential distribution model. We found that the 

results (like the parameter estimates) for the exponential distribution model were approximately 

samefor both the cases when the derivatives of an objective function were not available (Using the 

Hook and Jeeves, and Nelder and Meads method) and when first partial derivatives of the objective 

function were available (using Quasi-Newton method (DFP and BFGS methods).  
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