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I. INTRODUCTION 
Sometimes in real life it is difficult or inconvenient to get samples from a continuous distribution. 

Almost always the observed values are actually discrete because they are measured to only a finite number 

of decimal places and cannot really constitute all points in a continuum. Even if the measurements are 

taken on a continuous scale the observations may be recorded in a way making discrete model more 

appropriate. In some other situation because of precision of measuring instrument or to save space, the 

continuous variables are measured by the frequencies of non-overlapping class interval, whose union 

constitutes the whole range of random variable, and multinomial law is used to model the situation. In 

categorical data analysis with econometric approach existence of a continuous unobserved or latent variable 

underlying an observed categorical variable is presumed. Categorical variable is the observed as different 

discrete values when the unobserved continuous variable crosses a threshold value. Therefore, the inference 

is based on observed discrete values which are only indicative of the intervals to which unobserved 

continuous variable belongs but not its true values. Hence this is a case where one makes use of a 

discretization of the underlying continuous variable. 

 

In survival analysis the survival function may be a function of count random variable that is a 

discrete version of underlying continuous random variable. For example the length of stay in an 

observation ward is counted by number of days or survival time of leukemia patients counted by number of 

weeks. From these examples it is clear that the continuous life time may not necessarily always be 

measured on a continuous scale but may often be counted as discrete random variables. 

 

ABSTRACT: This paper introduces a new generalization of the Marshall-Olkin discrete uniform 

distribution introduced by Sandhya and Prasanth (2014). We refer to the new distribution as 

exponentiated Marshall-Olkin discrete uniform (E-MO-U) distribution. The new model contains the 

discrete uniform, the exponentiated discrete uniform and the Marshal Olkin discrete uniform 

distributions as special cases of the proposed model. The properties of the new model are discussed and 

the maximum likelihood estimation is used to estimate the parameters. While the properties of the mew 

model aren't in a closed form, then we numerically calculated the mean, the standard deviation, and 

Shannon’s entropy of the given model at different values of the parameters. To examine the performance 

of our new model in fitting several data we use a real set of data to compare the fitting of the new model 

with some well-known models, which provides the best fit to all of the data. This model is capable of 

modeling various shapes of aging and failure criteria. 
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Moreover often the continuous failure timed at a generated from a complex system poses more 

derivational problem than that of a discrete version of the underlying continuous one. Despite these discrete 

life time distributions played only a marginal role in reliability analysis. Therefore, there is a need to focus 

on more realistic discrete life time distributions (RezaeiRoknabadi et al.( 2009)). That is discretization of a 

continuous lifetime model is an interesting and intuitively appealing approach to derive a discrete lifetime 

model corresponding to the continuous one (Lai (2013)). 

A continuous random variable may be characterized either by its probability density function 

(pdf), moment generating function (mgf), moments, hazard rate function etc. Basically construction of a 

discrete analogue from a continuous distribution is based on the principle of preserving one or more 

characteristic property of the continuous one. There are various methods by which discrete analogue 𝑌 of a 

continuous random variable 𝑋. 

For any continuous distribution on ℜ+ =  0, ∞  with probability density function 𝑔 𝑥  (pdf) and a 

cumulative distribution function 𝐺 𝑥  (cdf), one can construct a discrete counterpart supported on the set of 

integers N0 0,1,2, . . .  , whose probability mass function (PMF) is of the form 

𝑝
𝑦

= 𝑃 𝑌 = 𝑦 = 𝐺 𝑦 + 1 − 𝐺 𝑦 ,           𝑦 = 0,1,2, ……                       (1.1) 

or 

𝑝
𝑦

= 𝑃 𝑌 = 𝑦 = 𝐺  𝑦 + 1 − 𝐺  𝑦 , 

where𝐺  𝑦  is the survival function (sf) of the random variable 𝑋. The resulting PMF will be in a compact 

form if the continuous (sf) is in compact form.  

 

Numerous distributions are introduced in the literature based on this method as, discrete 

exponential or the geometric distribution, discrete Weibull, discrete geometric Weibull, the discrete normal, 

the discrete Maxwell and Discrete Burr distributions introduced by Bracquemond and Gaudoin (2003), 

Nakagawa and Osaki (1975), Bracquemond and Gaudoin (2003), Nakagawa and Osaki (1975), Krishna and 

Pundir (2007) and Krishna and Pundir (2009), respectively. 

Another method to generating a discrete distribution is Marshall and Olkin generalization introduced by 

Marshall and Olkin (1997) using any discrete distribution. This generalization is generalized by adding an 

extra parameter 𝜃 > 0 to the base distribution using 

𝐺  𝑦 =
𝜃.𝑄  𝑦 

1 −  1 − 𝜃 𝑄  𝑦 
 , 

𝐹  𝑦 =  𝐺  𝑦  
𝛾

=  
𝜃.𝑄  𝑦 

1 −  1 − 𝜃 𝑄  𝑦 
 

𝛾

. 

Jayakumar and Mathew (2008) applied the new generalization to the semi-Burr distribution and introduce 

the exponentiated Marshall-Olkin semi-Burr distribution and derived different properties of the proposed 

distribution. 

 

Jose and Alice (2005) discussed Marshall-Olkin family of distributions and their applications in 

time series modeling and reliability. Jose and Krishna (2011) have developed Marshall-Olkin extended 

uniform distribution. These works and most of the references there in, deal with continuous distribution. 

Not much work is seen in the discrete case. The reason behind this may be that it is difficult to obtain 

compact mathematical expressions for moments, reliability, and estimation in the discrete set up. Using 

discretizing technique defined in (1.1), the probability mass function (PMF) corresponding to the Marshal-

Olkin family is given by 

 

𝑃 𝑥 = 𝐺 𝑥 − 𝐺 𝑥 − 1 =
𝜃𝑞 𝑥 

 1 −  1 − 𝜃 𝑄  𝑥   1 −  1 − 𝜃 𝑄  𝑥 − 1  
 .                                    (1.2)  

 

For a discrete uniform distribution with PMF 𝑝(𝑦) = 1/𝛼;    𝑦 = 1,2,3,… ,𝛼, Sandhya and 

Prasanth (2014) introduced the Marshall-Olkin discrete uniform distribution with a survival function given 

by: 

𝐺  𝑦 =
𝜃 𝛼 − 𝑦 

𝛼𝜃 +  1 − 𝜃 𝑦
;    𝑦 = 1,2,3, … , 𝛼,               𝛼, 𝜃 > 0,   
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and it corresponding PMF and CDF are, respectively given by 

 

g y =
αθ

 αθ +  1 − θ y  αθ +  1 − θ  y − 1  
 , 

 

G y = 1 −
θ α−y 

αθ+ 1−θ y
=

y

αθ+ 1−θ y
 .     (1.3) 

 

In this paper we will introduce the Exponentiated Marshall-Olkin discrete uniform (E-MO-U) distribution 

as a generalization of the Marshal-Olkin discrete uniform distribution, and illustrate its important features 

and properties.  

The rest of the article is organized as follows. Section II introduced the CDF and the PMF of the 

derived exponentiated Marshall-Olkin uniform distribution. The reliability function of the subject model, 

hazard rate, cumulative hazard rate, the revered hazard rate and the cumulative reversed hazard rate 

functions are given in Section III. A useful expansion of the CDF and the PMF are given in Section IV. 

Section V, discusses the statistical properties including quantile functions, random numbers generation, 

central and non-central moments, the moment generating function, the incomplete moment, mean deviation 

and Shannon entropy. Order statistics from the distribution are given in Section VI. Section VII, gives the 

stress-strength model from the underlying distribution. In Section VIII, we demonstrate two methods of 

estimation the maximum likelihood estimates and the method of moments to estimate the unknown 

parameters. Finally, applications of the model using real data set are presented in Section IX. 

 

II. EXPONENATED  MARSHALL-OLKINDISCRETEUNIFORM (E-MO-U) 

DISTRIBUTION 
By inserting (1.3) into the resilience parameter family of distributions, the CDF of the resulting discrete 

distribution is the exponentiated Marshall-Olkin discrete uniform distribution and given by: 

 

𝐹 𝑦 =  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

,        𝑦 = 0,1,2,… ,𝛼,                                                        (2.1) 

 

in which 𝛾 > 0 is the resilience parameter, and the corresponding PMF is given by 

 

𝑓 𝑦 =  
𝑦 + 1

𝛼𝜃 +  1 − 𝜃  𝑦 + 1 
 
𝛾

−  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

.                                                                2.2  

 

Figure (2.1) a, b, c and d bellow, illustrates some of the possible shapes of the PMF of the  

E-MO-U distribution for different values of the parameters. 

 

 
Figure 2.1(a). The PMF of the E-MO-U distribution for different values of 𝛾 at 𝛼 = 30 and𝜃 = 0.1. 
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Figure 2.1 (b). The PMF of the E-MO-U distribution for different values of 𝛾 at α = 30 andθ = 0.5. 

 
Figure 2.1(c). The PMF of the E-MO-U distribution for different values of 𝛾 at α = 30 andθ = 1. 

 

 
Figure  2.1(d).The PMF of the E-MO-U distribution different values of 𝛾 at α = 30 andθ = 6. 

 

Figure 2.1 shows different shapes of the PMF while it gives, a monotonic increasing, decreasing, constant 

and uni-modal shapes, so we can conclude that the introduced distribution is a very flexible distribution in 

modeling various type of data.  

 

III. RELIABILIY  PROPERTIESOF THE E-MO-U DISTRIBUTION 
In this section we present the survival, hazard rate, cumulative hazard rate, the reversed hazard 

rate and the cumulative reversed hazard rate for the Exponentiated Marshall-Olkin uniform distribution. 

 

3.1The Survival Function 
The E-MO-U distribution can be a useful characterization of life time data analysis of a given system. The 

survival function (SF), 𝐹  𝑦 , of the E-MO-U distribution is defined as: 
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𝐹  𝑦 = 1 −  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

,        𝑦 = 0,1,2, … ,𝛼.                                                                  (3.1) 

 

3.2 The Hazard Rate and the Cumulative Hazard Rate Functions 

The other characteristic of interest of a random variable is the hazard rate function 

 𝑦 =
𝑝𝑦

𝐹  𝑦 
and defined by: 

 𝑦 =
 

𝑦+1

𝛼𝜃+ 1−𝜃  𝑦+1 
 
𝛾

−  
𝑦

𝛼𝜃 + 1−𝜃 𝑦
 
𝛾

1 −  
𝑦

𝛼𝜃+ 1−𝜃 𝑦
 
𝛾 ,                                                            (3.2) 

We note that (𝑥) might be constant, increasing, or decreasing depending or even bathtub on the values of 

the parameters involved. 

For 𝛾 = 1, the hazard rate of the E-MO-U distribution reduced to hazard rate of the Marshall-Olkin 

uniform distribution. Sandhy and C. B. Prasanth 2014 shows that, for the Marshall-Olkin uniform 

distribution the distribution is with increasing failure rate (IFR) when 𝜃 >
𝛼−2𝑥

2𝛼−2𝑥
, decreasing failure rate 

(DFR) when 𝜃 <
𝛼−2𝑥

2𝛼−2𝑥
 and constant failure rate at 𝜃 =

𝛼−2𝑥

2𝛼−2𝑥
. This results are valid for any given value of 

𝛾 > 0. 

 

Figure (3.1) a, b and c  bellow, illustrates some of the possible shapes of the hazard rate function of the E-

MO-U distribution for different values of the parameters. 

 

Figure 3.1 (a).The hazard of the E-MO-U distribution different values of 𝛾 at 𝛼 = 30 and𝜃 = 0.1. 

 

 

Figure 3.1 (b).The hazard of the E-MO-U distribution different values of 𝛾 at 𝛼 = 30 and𝜃 = 0.5. 

 

0 5 10 15 20 25 30

0
1

2
3

4
5

y

 H
R

 

 =30, =0.1, =0.1

0 5 10 15 20 25 30

0
1

2
3

4
5

y

 H
R

 

 =30, =0.1, =1

0 5 10 15 20 25 30

0
1

2
3

4
5

y

 H
R

 

 =30, =0.1, =10

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

y

 H
R

 

 =30, =0.5, =0.1

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

y

 H
R

 

 =30, =0.5, =0.5

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

y

 H
R

 

 =30, =0.5, =6



  The Exponentiated Marshall-Olkin Discrete Uniform… 

 
| IJMER | ISSN: 2249–6645                 www.ijmer.com             | Vol. 7 | Iss. 8 | August. 2017 | 39 | 

 

Figure 3.1 (c).The hazard of the E-MO-U distribution different values of 𝛾 at 𝛼 = 30 and𝜃 = 6. 

 

Figure (3.1) shows different shapes of the hazard rate function while it gives, a monotonic 

decreasing, and bathtub shapes, so we can conclude that the introduced distribution is a very flexible 

distribution in modeling various types of data.  

The cumulative hazard rate function, 𝐻 𝑦 =   𝑦 
𝑦
𝑖=0  of the E-MO-U distribution is given by: 

 

𝐻 𝑦 =  
 

𝑦+1

𝛼𝜃+ 1−𝜃  𝑦+1 
 
𝛾

−  
𝑦

𝛼𝜃+ 1−𝜃 𝑦
 
𝛾

1 −  
𝑦

𝛼𝜃 + 1−𝜃 𝑦
 
𝛾

𝑦

𝑖=0

,                                             (3.3) 

 

where𝐻(𝑦) is the total number of failures or deaths over an interval of time, which describes how the risk 

of a particular outcome changes with time for a E-MO-U distribution. 

 

3.3The Reversed Hazard Rate and the Cumulative Reversed Hazard Rate Functions 

The reversed hazard rate function  𝑦 =
𝑝𝑦

𝐹 𝑦 
 and defined by: 

  𝑦 =
 

𝑦+1

𝛼𝜃+ 1−𝜃  𝑦+1 
 
𝛾

 
𝑦

𝛼𝜃+ 1−𝜃 𝑦
 
𝛾 − 1,                                                                                          3.4  

while the cumulative reversed hazed rate is given by: 

𝐻  𝑦 =  
 

𝑦+1

𝛼𝜃+ 1−𝜃  𝑦+1 
 
𝛾

 
𝑦

𝛼𝜃+ 1−𝜃 𝑦
 
𝛾 − 𝑦

𝑦

𝑖=0

,                                                                               (3.5) 

 

IV. EXPANSIONFORTHE PMF AND THE CDFOF THE E-MO-U DISTRIBUTION 
In this section we introduced another expression to the PMF and the CDF functions. The CDF of 

the E-MO-U distribution can be written as 

𝐹 𝑦 =
𝑦𝛾

 𝛼𝜃 𝛾
 1 −  

𝜃 − 1

𝛼𝜃
 𝑦 

−𝛾

.                                                                                                 4.1  

 

Now, let 𝑘 > 0 be real non-integers. If |𝑧| < 1, we have the series representations  

 

 1 − 𝑧 −𝑘 =  
𝛤 𝑘 + 𝑖 

𝛤 𝑘 𝑖!
𝑧𝑖

∞

𝑖=0

. 

From (4.1) and using the previous expansion, one can write the CDF of the E-MO-U distribution as 

 

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

y

 H
R

 

 =30, = 6, =0.4

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

y

 H
R

 

 =30, = 6, =0.7

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

y

 H
R

 

 =30, = 6, =1



  The Exponentiated Marshall-Olkin Discrete Uniform… 

 
| IJMER | ISSN: 2249–6645                 www.ijmer.com             | Vol. 7 | Iss. 8 | August. 2017 | 40 | 

𝐹 𝑦 =  
𝛤 𝛾 + 𝑖 

𝜃𝛾𝛤 𝛾 𝑖!

∞

𝑖=0

.  
𝜃 − 1

𝜃
 
𝑖

 
𝑦

𝛼
 
𝛾+𝑖

≡  𝑤1𝑖 𝜃, 𝛾 

∞

𝑖=0

 
𝑦

𝛼
 
𝛾+𝑖

,                                 4.2  

where 

𝑤1𝑖 𝜃, 𝛾 =
𝛤 𝛾 + 𝑖 

𝜃𝛾𝛤 𝛾 𝑖!
 
𝜃 − 1

𝜃
 
𝑖

. 

It is clear that (4.2) is a linear combination of the CDF of the exponentiated discrete uniform distributions. 

On the same manner, the PMF of the E-MO-U distribution can be written as 

 

𝑃 𝑦 =  𝑤2𝑖 𝜃, 𝛾 

∞

𝑖=0

  𝑦 + 1 𝛾+𝑖 −  𝑦 𝛾+𝑖  ,                                                                4.3  

where 

w2i θ, γ =
Γ γ + i 

 αθ γΓ γ   i!
 

θ − 1

θ
 

i

. 

 

V. STATISTICAL PROPERTIES OF THE E-MO-U DISTRIBUTION 
This section introduces some of the statistical properties of the E-MO-U distribution including the 

quantiles, generation of random numbers from the distribution, the central and non-central moments, the 

moment generating function and the Shannon’s Entropy statistics. 

 

5.1 Quintile of the E- MO- U Distribution 

The 𝑞𝑡 quantile is the solution of the Equation 𝐹 𝑦𝑞 = 𝑞 using Equation (2.1), the 𝑞𝑡 quantiles from the 

E-MO-U distribution after some simplifications is given by 

𝑦
𝑞

=
𝛼𝜃.  𝑞

1

𝛾

1 −  1 − 𝜃 𝑞
1

𝛾

.                                                                                              5.1  

 

5.2 Random Numbers Generation from E-MO-U Distribution 
Using the method of inversion [See Kelton and Law (2000)], one can generate random numbers 

from the E-MO-U distribution as 

 

 
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

= 𝑢, 

 

where𝑢 is an observation from the uniform distribution on the unit interval. This yields 

 

𝑦 =
𝛼𝜃.  𝑢

1

𝛾

1 −  1 − 𝜃 𝑢
1

𝛾

.                                                                                                        5.2  

 

5.3    The Moments of the E- MO- U Distribution 

Depends on (4.3), one can get the 𝑟𝑡 non-central moments, 𝐸 𝑥𝑟 = 𝜇𝑟 =  𝑦𝑟 . 𝑝𝑦
∞
𝑦=0 , or (moments about 

the origin) of the E-MO-U distribution, as: 

 

𝜇𝑟 =  𝑦𝑟. 𝑤2𝑖 𝜃, 𝛾 

∞

𝑖=0

  𝑦 + 1 𝛾+𝑖 −  𝑦 𝛾+𝑖 

𝛼

𝑦=0

     =  𝑤2𝑖 𝜃,𝛾 

∞

𝑖=0

   𝑦 + 1 𝛾+𝑖 −  𝑦 𝛾+𝑖 

𝑧

𝑦=0

𝑦𝑟,    5.3  

where 
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𝑤2𝑖 𝜃, 𝛾 =
𝛤 𝛾 + 𝑖 

 𝛼𝜃 𝛾𝛤 𝛾 𝑖!
 
𝜃 − 1

𝜃
 
𝑖

. 

 

Also the central moment, 𝑚𝑟, and the moment generating function, 𝐸 𝑒𝑡𝑌 , can be obtained easily from the 

𝑟𝑡 non-central moments, 𝜇𝑟, throw the relations: 

𝑚𝑟 = 𝐸 𝑌 − 𝜇 𝑟 =   
𝑟
𝑛
  −𝜇 𝑟−𝑛

𝑟

𝑛=0

.𝐸 𝑌𝑟 , 

𝐸 𝑒𝑡𝑋  =  
𝑡𝑟

𝑟!
𝐸 𝑋𝑟 

∞

𝑟=0

. 

We numerically compute the expectation and standard deviation (Tables 1 and 2) of the E-MO-U 

distribution at different value of 𝛾 and 𝜃 at 𝛼 = 30,100 since compact expressions are not available for 

calculating the same. 

 

Table 1: Expectation and standard deviation with different 𝜃and 𝛾at 𝛼 = 30. 

 
Table 2: Expectation and standard deviation with different 𝜽and 𝜸at 𝜶 = 𝟏𝟎𝟎. 

 
 

5.4Incomplete Moments of the E- MO- U Distribution 

The incomplete moments of the income distribution form natural building blocks for measuring 

inequality. For example, the Lorenz and Bonferroni curves depend upon the incomplete moments of the 

income distribution. The 𝑟𝑡 incomplete moment, 

𝜇𝑟 𝑧 = 𝐸 𝑋𝑟 𝑥 < 𝑧 =  𝑦𝑟. 𝑝
𝑦

𝑧
𝑦=0 , of the new class is given by 

 

𝜇
𝑟
′  𝑧 =  𝑦𝑟. 𝑤2𝑖 𝜃, 𝛾 

∞

𝑖=0

  𝑦 + 1 𝛾+𝑖 −  𝑦 𝛾+𝑖 

𝑧

𝑦=0

=  𝑤2𝑖 𝜃, 𝛾 

∞

𝑖=0

   𝑦 + 1 𝛾+𝑖 −  𝑦 𝛾+𝑖 

𝑧

𝑦=0

𝑦𝑟.    5.4  
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5.5Mean Absolute  Deviations of the E- MO- U Distribution 

The dispersion in a population is evidently measured to some extent by the totality of deviations 

from the mean or median. These are known as the mean deviation about the mean and the mean deviation 

about the median and are defined by 

𝐷1 𝑌 =   𝑦 − 𝜇 𝑝
𝑦

∞

𝑦=0

𝑎𝑛𝑑𝐷2 𝑌 =   𝑦 − 𝑀 𝑝
𝑦

∞

𝑦=0

, 

respectively, where 𝜇 = 𝐸(𝑋) is the mean of the E-MO-U distribution and 𝑀 is its median. 

 

The measures 𝐷1 𝑌  and 𝐷2 𝑌  can be expressed as 

 

𝐷1 𝑌 = 2𝜇. 𝐹 𝜇 − 2𝑇 𝜇 and𝐷₂(𝑌) = 𝜇 − 2𝑇 𝑀 , 
 

where𝑇 𝑧 =  𝑦. 𝑝𝑦
𝑧
𝑦=0  is the incomplete mean of 𝑌 and can be easily obtained from (5.2) by setting 

𝑟 = 1. 

5.6 Shannon Entropiesof the E- MO- U Distribution 

The entropy measure of a random variable 𝑌 with PMF ,𝑃𝑦 , is a measure of variation of the 

uncertainty. One of the popular entropy measures is the Shannon’s Entropy given by 

 

𝐼𝑆 = − 𝑃𝑦𝑖
. 𝑙𝑜𝑔  𝑃𝑦𝑖

 

∞

𝑖=1

. 

For a E-MO-U distribution with pdf (2.2), then the Shannon’s entropy is given by 

𝐼𝑆 = −  
𝑦 + 1

𝛼𝜃 +  1 − 𝜃  𝑦 + 1 
 
𝛾

−  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

×  𝑙𝑜𝑔   
𝑦 + 1

𝛼𝜃 +  1 − 𝜃  𝑦 + 1 
 
𝛾

−  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

  

∞

𝑖=1

.   5.5  

 
While compact expressions aren't available for calculating the entropy, so we numerically compute it at 

different values of the parameters (Tables 3 and 4). 

 

Table 3: Entropy with different 𝜃and 𝛾at 𝛼 = 30. 

𝜽 

𝜸 
𝟎.𝟏 𝟎.𝟑 𝟎.𝟓 𝟎.𝟖 𝟏 𝟐 𝟒 𝟖 

𝟎.𝟏 0.04505 0.04372 0.04290 0.04204 0.0416 0.04012 0.03851 0.0368 

𝟎.𝟑 0.09578 0.08918 0.08507 0.08078 0.07859 0.07141 0.06388 0.05639 

𝟎.𝟓 0.13031 0.11751 0.10945 0.10112 0.09694 0.08348 0.07003 0.05741 

𝟎.𝟖 0.16807 0.14543 0.13117 0.11681 0.10978 0.08806 0.06792 0.05061 

𝟏 0.18768 0.15833 0.14004 0.12203 0.11337 0.08735 0.06431 0.04553 

𝟐 0.25159 0.19030 0.15639 0.12621 0.11278 0.07636 0.04906 0.03045 

𝟒 0.30523 0.20273 0.15524 0.11713 0.10137 0.06247 0.03731 0.02250 

𝟖 0.32202 0.19339 0.14010 0.10070 0.08537 0.05015 0.02964 0.01868 

 

Table 4: Entropy with different 𝜃and 𝛾at 𝛼 = 100. 

𝜽 

𝜸 
𝟎.𝟏 𝟎.𝟑 𝟎.𝟓 𝟎.𝟖 𝟏 𝟐 𝟒 𝟖 

𝟎.𝟏 0.02038 0.01962 0.01918 0.01873 0.01851 0.01777 0.01699 0.01619 

𝟎.𝟑 0.04402 0.03999 0.03770 0.03543 0.03431 0.03072 0.02712 0.02364 

𝟎.𝟓 0.06035 0.05222 0.04772 0.04336 0.04126 0.03473 0.02853 0.02294 

𝟎.𝟖 0.07824 0.06357 0.05584 0.04863 0.04525 0.03526 0.02648 0.01923 

𝟏 0.08745 0.06852 0.05888 0.05009 0.04605 0.03442 0.02464 0.01696 

𝟐 0.11690 0.08058 0.06433 0.05075 0.04490 0.02949 0.01834 0.01091 

𝟒 0.14413 0.08730 0.06498 0.04789 0.04099 0.02949 0.01385 0.00772 

𝟖 0.16486 0.08809 0.06169 0.04312 0.03607 0.02023 0.01118 0.00630 
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VI. ORDER STATISTICSOF THE  E-MO-U DISTRIBUTION 
Order statistics are among the most fundamental tools in non-parametric statistics and inference. 

They enter the problems of estimation and hypothesis testing in a variety of ways. Let 𝐹𝑖 𝑦  and 𝑓
𝑖
 𝑦  be 

the CDF and PMF of the 𝑖-th order statistic of a random sample of size n from E-MO-U distribution.  

Since,𝐹𝑖 𝑦 =   
𝑛
𝑘
  𝐹 𝑦  𝑘 1 − 𝐹 𝑦  𝑛−𝑘𝑛

𝑘=𝑖 , 

 

using the binomial expansion for  1 − 𝐹 𝑦  𝑛−𝑘, we obtain the following result: 

 

𝐹𝑖 𝑦 =    
𝑛
𝑘
  

𝑛 − 𝑘
𝑗

  −1 𝑗 𝐹 𝑦  𝑘+𝑗

𝑛−𝑘

𝑗=0

𝑛

𝑘=𝑖

. 

 

Then, we can write 𝐹𝑖 𝑦  depends on (4) as 

𝐹𝑖 𝑦 =    
𝑛
𝑘
  

𝑛 − 𝑘
𝑗

  −1 𝑗  
𝑦

𝛼𝜃+ 1−𝜃 𝑦
 
𝛾 𝑘+𝑗 

𝑛−𝑘
𝑗=0

𝑛
𝑘=𝑖 ≡    

𝑛
𝑘
  

𝑛 − 𝑘
𝑗

  −1 𝑗𝐹1 𝑦 
𝑛−𝑘
𝑗=0

𝑛
𝑘=𝑖 ,    (6.1) 

 

where𝐹1 𝑦  is the exponentiated Marshall-Olkin Uniform CDF with exponentiated parameter 𝛾 𝑘 + 𝑗 . 
The corresponding PMF of the 𝑖-th order statistic, 𝑓

𝑖
 𝑦 = 𝐹𝑖 𝑦 − 𝐹𝑖 𝑦 − 1  for an integer value of 𝑦, 

then is given by 

𝑓
𝑖
 𝑦 =    

𝑛
𝑘
  

𝑛 − 𝑘
𝑗

  −1 𝑗𝑓
1
 𝑦 

𝑛−𝑘

𝑗=0

𝑛

𝑘=𝑖

,                                                             (6.2)  

 

where𝑓
1
 𝑦  is the exponentiated Marshall-Olkin Uniform PMF with exponentiated parameter 𝛾 𝑘 + 𝑗 . 

 

VII. STRESS-STRENGTH PARAMETEROFTHE  E-MO-U DISTRIBUTION 
The stress-strength parameter 𝑅 = 𝑃 𝑋 > 𝑌  is a measure of component reliability and its 

estimation problem when X and Y are independent and follow a specified common distribution has been 

discussed widely in the literature. Suppose that the random variable 𝑋 is the strength of a component which 

is subjected to a random stress 𝑌. Estimation of 𝑅 when 𝑋 and 𝑌 are independent and identically distributed 

following a well-known distribution has been considered in the literature. Many applications of the stress 

strength model, for its own nature, are related to engineering or military problems. There are also natural 

applications in Medicine or Psychology, which involves the comparison of two random variables, 

representing for example the effect of a specific drug or treatment administered to two groups, control and 

test.  

Almost all of these studies consider continuous distributions for 𝑋and 𝑌, because many practical 

applications of the stress-strength model in engineering fields presuppose continuous quantitative data. A 

complete review is available in Kotz et al. (2003). However, in this regard, a relatively small amount of 

work is devoted to discrete or categorical data. Data may be discrete by nature. For example, the stress 

pattern in a step-stress accelerated life test can be treated as a discrete random variable of which the 

possible values can be obtained from all stress levels, and the corresponding probabilities can be obtained 

from the acting times of each stress levels. Moreover, the stress state of a component can be categorized 

based on the characteristic of external loads. For instance, the stress state of a mechanical component can 

be simply classified as state 1, state 2 and state 3, which correspond to low load, moderate load and heavy 

load, respectively. More generally, according to the change of external loads, the stress of a component can 

be categorized into arbitrary finite state: state 1, state 2, ... , state m. 

The stress-strength parameter, in discrete case, is defined as 
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𝑅 = 𝑃 𝑋 > 𝑌 =  𝑓𝑋 𝑥 .𝐹𝑌 𝑥 

∞

𝑋=0

, 

where𝑓
𝑋
 and 𝐹𝑌 denote the PMF and CDF of the independent discrete random variables 𝑋 and 𝑌, 

respectively. Now, let 𝑋 ∼ 𝐸 −𝑀𝑂 − 𝑈(𝜗1)and 𝑌 ∼ 𝐸 −𝑀𝑂 − 𝑈(𝜗2), where 

𝜗1 =  𝛼1,𝜃1, 𝛾
1
 
𝑇
and 𝜗2 =  𝛼2,𝜃2, 𝛾

2
 
𝑇
. Using Equations (4.2) and (4.3), we obtain 

 

𝑅 = 𝑃 𝑋 > 𝑌 =    
𝑦+1

𝛼1𝜃1  + 1−𝜃1  𝑦+1 
 
𝛾1

−  
𝑦

𝛼1𝜃1+ 1−𝜃1 𝑦
 
𝛾1
 ×  

𝑦

𝛼2𝜃2+ 1−𝜃2 𝑦
 
𝛾2

∞
𝑋=0 .         (7.1) 

 

Depending on (4.2) and (4.3), 𝑹 can be written as 

 

R =    w2i θ, γ ∞
i=0 w1i θ2, γ

2
  

y

α2
 

γ2+i
  y + 1 γ+i −  y γ+i ∞

i=0
∞
X=0 ,     (7.2) 

where 

𝑤1𝑖 𝜃2,𝛾
2
 =

𝛤 𝛾
2

+ 𝑖 

𝜃2
𝛾2𝛤 𝛾

2
 𝑖!

 
𝜃2 − 1

𝜃2

 
𝑖

, 

and 

𝑤2𝑖 𝜃1, 𝛾
1
 =

𝛤 𝛾
1

+ 𝑖 

 𝛼1𝜃1 
𝛾1𝛤 𝛾

1
 𝑖!

 
𝜃1 − 1

𝜃1

 
𝑖

. 

Now, assume that 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦
1
, 𝑦

2
, … , 𝑦

𝑚
 are independent observations from 𝑋 ∼ 𝐸 −𝑀𝑂 −

𝑈(𝜗1)and 𝑌 ∼ 𝐸 −𝑀𝑂 − 𝑈(𝜗2), respectively. The total likelihood function is ℓR ϑ
∗ = ℓn ϑ1 . ℓm(ϑ2), 

where 𝜗∗ =  𝜗1,𝜗2 . The score vector is given by: 

 

𝑈𝑅 𝜗
∗ =  

𝜕ℓ𝑅

𝜕𝛼1

,   
𝜕ℓ𝑅

𝜕𝜃1

,   
𝜕ℓ𝑅

𝜕𝛾
1

,   
𝜕ℓ𝑅

𝜕𝛼2

,   
𝜕ℓ𝑅

𝜕𝜃2

,   
𝜕ℓ𝑅

𝜕𝛾
2

 , 

 

and the MLE of 𝜗∗, say 𝜗 
∗
, may be attained from the nonlinear equation 𝑈𝑅 𝜗

∗ = 0. Thus, by inserting the 

MLEs in equation (7.2) the stress-strength parameter 𝑅 will be estimated. 

 

VIII. ESTIMATIONOF THE  E-MO-U DISTRIBUTION 
In this section, the maximum likelihood estimation is used to estimate the unknown parameters. An 

equation is presented to estimate the parameters using the method of moments.  

 

8.1    The Maximum likelihood Method 
To apply the method of maximum likelihood for estimating the parameter vector 

𝜗 =  𝛼,𝜃, 𝛾 𝑇of E-MO-U distribution, assume that 𝑥 =  𝑥1 , 𝑥2 , . . . , 𝑥𝑛 
𝑇  is a random sample of size n from 

an E-MO-U distribution. The log-likelihood function becomes 

 

ℒ =  log   
y+1

αθ+ 1−θ  y+1 
 

γ

−  
y

αθ+ 1−θ y
 

γ

 n
i=1 .                                                                           (8.1) 

 

Then, the first derivatives of ℒ with respect to the vector of the parameters are 

 
∂ℒ

∂γ
=  

Bα,θ,γ yi+1 −Bα,θ,γ yi 

Aα,θ,γ xi 
n
i=1 = 0 ,                                                                                                   (8.2) 

 
∂ℒ

∂θ
=  

Cα,θ,γ yi+1 −Cα,θ,γ yi 

Aα,θ,γ xi 
n
i=1 = 0,                                                                                                     (8.3) 
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∂ℒ

∂α
=  

Dα,θ,γ yi+1 −Dα,θ,γ yi 

Aα,θ,γ xi 
n
i=1 = 0 .                                                                                                 (8.4) 

where, 

𝐴𝛼,𝜃,𝛾 𝑦𝑖 =  
𝑦 + 1

𝛼𝜃 +  1 − 𝜃  𝑦 + 1 
 
𝛾

−  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

, 

 

𝐵𝛼,𝜃,𝛾 𝑦𝑖 =  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 
𝛾

𝑙𝑜𝑔  
𝑦

𝛼𝜃 +  1 − 𝜃 𝑦
 , 

 

𝐶𝛼,𝜃,𝛾 𝑦𝑖 =
−𝛾 𝛼 − 𝑦 𝑦𝛾

 𝛼𝜃 +  1 − 𝜃 𝑦 𝛾+1
 ,    and 

 

𝐷𝛼,𝜃,𝛾 𝑦𝑖 =
−𝛾 𝜃 𝑦𝛾

 𝛼𝜃 +  1 − 𝜃 𝑦 𝛾+1
 . 

 

The solutions of likelihood equations (8.2) to (8.4) provide the maximum likelihood estimators (MLEs) of 

𝜗 =  𝛼,𝜃, 𝛾 𝑇 , say 𝜗 =  𝛼 ,𝜃 , 𝛾  𝑇, which can be obtained by a numerical method such as the three variable 

Newton-Raphson type procedure. 

For interval estimation and hypothesis tests on the model parameters, we require the information matrix. 

The 3 × 3 observed information matrix is 

 

𝐼𝑛 𝜗  =

 
 
 
 
 
 
 −

𝜕2ℒ

𝜕𝛼2
−

𝜕2ℒ

𝜕𝛼𝜕𝜃
−

𝜕2ℒ

𝜕𝛼𝜕𝛾

−
𝜕2ℒ

𝜕𝜃𝜕𝛼
−
𝜕2ℒ

𝜕𝜃2 −
𝜕2ℒ

𝜕𝜃𝜕𝛾

−
𝜕2ℒ

𝜕𝛾𝜕𝛼
−

𝜕2ℒ

𝜕𝛾𝜕𝜃
−
𝜕2ℒ

𝜕𝛾2  
 
 
 
 
 
 

 . 

 

One can show that the E-MO-U distribution satisfies the regularity conditions which are fulfilled 

for parameters in the interior of the parameter space but not on the boundary (see, e.g., Cox and Hinkley, 

1974). Hence, the MLE vector 𝜗  is consistent and asymptotically normal. That is, 𝐼𝑛
1/2 𝜗  𝜗 − 𝜃  

converges in distribution to trivariate normal with the (vector) mean zero and the identity covariance 

matrix. 

One can use the normal distribution of 𝜗  to construct approximate confidence regions for some parameters. 

Indeed, an asymptotic 100 1 − 𝜉  confidence interval for each parameter 𝜗𝑖, is given by 

 𝜗 𝑖 − 𝑍𝜉/2 𝐽 𝑖𝑖 ,   𝜗 𝑖 + 𝑍𝜉/2 𝐽 𝑖𝑖 ,           𝑖 = 1,2,3, 

 

where𝐽 𝑖𝑖 denotes the  𝑖, 𝑖  diagonal element of 𝐼𝑛
−1 𝜗   and Zξ/2 is the (1 − 𝜉/2) -th quantile of the standard 

normal distribution. 

 

8.2    Method of Moments 

To apply the method of moments for estimating the parameters 𝛼,𝜃 and 𝛾 of E-MO-U distribution, 

we need to equate the population moments to the corresponding sample moments and subsequently solve 

the two equations simultaneously. Since the moments of the new distribution cannot be obtained in closed 

forms, the equations can't be solved via ordinary techniques. So, we resort to a method of pseudo moment 

by minimizing 

 

𝑆 𝛼,𝜃, 𝛾 =  𝑀1 − 𝐸 𝑌  
2

+  𝑀2 − 𝐸 𝑌2  
2

+  𝑀3 − 𝐸 𝑌3  
2

, 
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with respect to 𝛼,𝜃 and 𝛾, where 𝑀1 =
1

𝑛
 𝑥𝑖

𝑛
𝑖=1 , 𝑀2 =

1

𝑛
 𝑥𝑖

2𝑛
𝑖=1  and 𝑀3 =

1

𝑛
 𝑥𝑖

3𝑛
𝑖=1  are the first, second 

and the third sample moments, respectively. 

 

IX. APPLICATIONOF THE  E-MO-U DISTRIBUTION 
In this section, the E-MO-U model will be examined for two real data sets.  

9.1  Application 

 

The first data is given by Chakraborty (2010) on the number of European red mites on apple leaves. This 

data set consists of 123 observation and are presented in Table 5 

 

Table 5: Number of European Red Mites on Apple Leaves. 

Number of European red mites 0 1 2 3 4 5 6 7 

Observed frequency 70 38 17 10 9 3 2 1 

 

We compare the fitting of the E-MO-U model with 7 well known discrete models. In each case, 

the parameters are estimated by maximum likelihood as described in Section 8. We have fitted the E-MO-U 

distribution to the data, and compared this model with discrete exponentiatedWeibull (EW), discrete 

transmuted geometric (TG), discrete exponentiated generalized geometric (EGG), discrete modified 

Weibull type I (MW-I), discrete modified Weibull type II (MW-II), discrete additive Weibull (AW), discrete 

modified Weibull extension (MWE) and discrete Burr-III (B-III) distributions introduced by Nekoukhou 

and Bidram (2015), Chakraborty and Bhati (2016), Bidram et al. (2016), reported  in Chakraborty (2015), 

reported  in Chakraborty (2015), reported  in Chakraborty (2015), reported  in Chakraborty (2015) and AL-

Huniti and AL-Dayian(2012). 

The model selection is carried out using the likelihood  𝐿 , Akaike information criterion (AIC), the 

Bayesian information criterion (BIC) and the Kolmogorov-Smirnov (KS) test. 

Table 6 lists the MLEs of the parameters and the values of the AIC and BIC statistics for the tested models. 

Based on the criterion, we conclude that the E-MO-U distribution provides a superior fit to these data than 

the other models. 

 

Table 6. MLEs (standard errors in parentheses) and the measures AIC, BIC and KS test to Number of 

European red mites on apple leaves. 

Model Estimated Parameters 𝑳 AIC BIC KS 

E-MO-

U 
𝜽 =0.0233  

(0.0381) 

𝜸 =5.8130  

(8.9752) 

𝜶 = 𝟕  -219.435 442.8699 448.8912 0.4567 

EW 𝛾 =0.4545   
(0.3470) 

𝛼 =1.5235   
(0.6730) 

𝑝 =0.8098   
(0.2329) 

 -222.0388 450.0777 459.1096 0.4702 

TG 𝛼=-0.0242  
(0.2912) 

𝑞=0.5303  
(0.0539) 

  -222.438 448.876 454.8972 0.4622 

EGG 𝛼=1.6986  
(2.1612) 

𝜃=0.5064  
(0.0823) 

𝛾=0.7526  
(0.4958) 

 -222.3655 450.7311 459.763 0.4752 

MW-I 𝛼=0.2682  

(13.3768) 

𝛽=1.0176   

(0.2252) 

𝑞=0.6140   

(3.1619) 

 -222.4288 450.8575 459.8894 0.4613 

MW-II 𝛼=0.0785  

(0.0770) 

𝛽=0.8099  

(0.2123) 

𝑞= 0.5556  

(0.0428) 

 0.4704145 449.7673 458.7992 0.4704 

AW 𝜃=0.7613   
(0.4525) 

𝛾=1.5256   
(0.7521) 

𝑞1=0.6031   
(0.1882) 

𝑞2=0.8827   
(0.2662) 

-222.1147 452.2295 464.272 0.4787 

MWE 𝜃=0.0142  
(0.007) 

𝛽=0.2606  
(0.0176) 

𝑞=0.9679  
(0.0098) 

 -222.1292 450.2584 450.2584 0.4727 

B-III  𝑐=1.7821  
(0.1654) 

𝜃=0.3241  
(0.0417) 

  -227.4882 458.9765 464.9977 0.4880 

  

Figure 3 below, shows the empirical CDF and the theoretical versus the empirical PMF and CDF for the 

underlying distribution which shows a great fitting to the data. 
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Figure 3.The theoretical versus the empirical PMF and CDF for the E-MO-U distribution. 

 

9.2 Numbers of Ten Shots Fired From a Rifle 

The data were given by Nikora and Lyu (1996) on the number of failures of software observed 

over 62 weeks. The data are presents in table 5 below. 

 

Table 7: Numbers of failures of software observed over 62 weeks. 

Failure 0 1 2 3 4 5 6 7 8 9 10 11 

Frequency 20 10 11 10 2 3 3 0 0 1 1 1 

 

We compare the fitting of the E-MO-U model with discrete exponentiatedWeibull (EW), discrete 

transmuted geometric (TG), discrete modified Weibull type I (MW-I), discrete modified Weibull type II 

(MW-II) and discrete modified Weibull extension (MWE) distributions.  

In each case, the parameters are estimated by maximum likelihood. In each case the expected frequency 

form each distribution has been calculated and perform the chi-square test. Table 8 below summarizes the 

results 

 

Table 8. MLEs (standard errors in parentheses) and the measures AIC and BIC to numbers of failures of 

software observed over 62 weeks. 

Count 
Observed 

frequency 

Expected frequency 

E-MO-U EW TG MW-I MW-II MWE 

0 20 20.623 19.556 15.727 18.897 19.443 20.926 

1 10 10.757 12.783 17.854 13.684 13.011 11.080 

2 11 9.125 9.172 12.353 9.487 9.167 8.542 

3 10 8.896 6.538 8.416 6.494 6.467 6.544 

> 3 11 12.599 13.951 7.649 13.438 13.912 14.907 

sum 62 62 62 62 62 62 62 

Parameter 

estimates 

𝜽 =0.1133 

(0.1058) 

𝜸 = 0.664   

(0.5448) 

𝜶 =-0.152   

(0.3811) 

𝜶 =0.3440   

(8.8921) 

𝜶 =0.0234  

(0.0601) 

𝜃=0.0902   

(0.4039) 

𝜸 =1.5202 

(1.0963) 

𝜶 = 1.2796   

(0.5851) 

𝒒 =0.6628   

(0.0572) 

𝜷=1.0482453   

(0.3646) 

𝜷=0.9443  

(0.2597) 

𝛽=0.3129   

(0.1867) 

𝜶 =11  

(0.00) 
𝒑 =0.8234   

(0.2346) 
 

𝒒=0.7630   

(1.3706) 

𝒒=0.6923  

(0.0546) 

𝑞=0.9455  

(0.1251) 

𝑳𝒎𝒂𝒙 -121.0313 -121.7864 -121.8662 -121.8926 -121.8926 -122.0297 

AIC 246.0625 249.5729 247.7325 249.7851 249.7851 250.0594 

BIC 250.3168 255.9543 251.9868 256.1665 256.1665 256.4408 

𝝌𝟐 2.6524 3.4375 6.5302 3.6329 3.61816 3.7033 

𝒑-value 0.1241 0.0637 0.0382 0.0566 0.0572 0.0543 

 

Based on the criterion in table 8, we conclude that the E-MO-U distribution provides a better fit to 

these data than the other models based on the 𝜒2 test. Figure 4 below, shows the empirical CDF and the 

theoretical versus the empirical PMF and CDF for the underlying distribution which shows a great fitting to 

the data. 
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Figure 4.The theoretical versus the empirical PMF and CDF for the U-MO-U distribution. 
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