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I. INTRODUCTION 
The Hamilton-Poisson systems appear naturally in many areas of physical science and engineering, 

robotics, spatial dynamics and secure communications [9, 3]. A special class of Hamilton-Poisson systems is 

formed by a family of differential equations on 
3

R  which depends by a triple of real parameters ),,( 321   

and two parameters a  and ,b  called the (general) Euler top system with two parameters. This family contains 

various integrable systems, for instance: a particular case of Rikitake system, a special case of Rabinovich 

system and many others. The Rikitake system serves as model for the reversals of polarity of the Earth's 

magnetic field [14]. The Rabinovich system models the dynamics of three resonantly coupled waves, 

parametrically excited [12]. 

The fractional calculus has been found to be an important tool in various fields, such as mathematics, physics, 

engineering, chemistry, biology, economics, chaotic dynamics and other complex dynamical systems [1, 5, 7, 

11, 13]. A class of fractional dynamical systems is formed by a family of fractional differential equations on 
3

R  associated to general Euler top system with two parameters, called the (general) fractional Euler top system 

with two parameters. 

This paper is structured as follows. In Section 2, the general Euler top system with two parameters is 

realized as a Hamilton-Poisson system. In Section 3 we introduce the fractional Euler top system with two linear 

controls )1.3( . This section is devoted to studying of the fractional stability of equilibrium states for the 

fractional system )1.3( . In Section 4, the numerical integration and numerical simulation for the perturbed 

fractional Euler top system associated to dynamics )1.3(   is discussed. 

 

II.  GENERAL EULER TOP SYSTEM WITH TWO PARAMETERS 
For details on Hamiltonian dynamics, see e.g. [9]. 

We consider the following differential system of Euler type on 
3

R : 
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where  ,/)()( dttdxtx ii   Rbai ,,  for  3,1i  such that 0321   and t  is the time. 

We present the dynamical behavior of a family of fractional differential systems associated to Euler top 

system with two parameters. The fractional stability of equilibrium states for the perturbed fractional Euler 

top system with two linear controls is studied. Finally, the numerical integration and numerical simulation 

of them are discussed. 
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If  ,0ab )1.2(   is called the (general) Euler top system with two linear controls. 

If ,0 ba )1.2(  becomes the (general) Euler top system [6], given by: 

)2.2(            ),()()(     );()()(      );()()( 21

3

331

2

232

1

1 txtxtxtxtxtxtxtxtx     

where R321 ,,   such that .0321   

We will denote the vector of parameters  3,1, ii   by  ).,,( 321     

Remark 2.1. In [6] is showed that the general Euler top system may be realized as a 

Hamilton-Poisson system in an infinite number of different ways. □ 

Example 2.1. (i)  Let  
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If in )1.2(   we take  ),,,( 123123 aaaaaa  ,, Rba  then: 
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The dynamics )3.2(  is called the rigid body equations with two linear controls, where 

),,( 321 xxxx   represents the angular velocity vector of rigid body, 321 ,, III  the components 

of its inertia tensor and  
Rba,  are parameters. 

If in )3.2(   we take ,0 ba  then we obtain the Euler equations of the free rigid body 

on orthogonal group )3(SO  [9]. 

(ii) For  )1,1,(  k  and  , ba   the system )1.2(   becomes: 

)4.2(            ,     ;       ; 21313122321 xxxxxxxxxkxx     

where R,k  with  0k  are parameters. This system is called the Rikitake-Hamilton 

system with one quadratic control  [14, 8]. 

(iii) For  )1,1,1(   and  ,R ba  the system )1.2(   becomes: 

)5.2(            .     ;       ; 21313122321 xxxxxxxxxxx     

Note that the system )5.2(  is the general Rabinovich studied in [12] in the case 

.0321    It is called the Rabinovich system with two linear controls. For ,0  the dynamics 

)5.2(   is the Rabinovich system [2, 15]. □ 

Remark 2.2. Among the studied topics related to the systems given in Example 1.2  we 

recall the construction of Hamilton-Poisson realizations and nonlinear stability problem 

for the systems )3.2(  with  0k  [9], )4.2(   [8]  and  )5.2(  with 0  [2, 15]. □ 

Proposition 2.1.  Let .0,,  aba R  A Hamilton-Poisson realization of the Euler top 

system  )1.2(  is  ),,( ,,

3 
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Proof. We have ,)( 1
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and )1.2(   is an Hamilton-Poisson 

system. Also, 


baC ,  is a Casimir, since .0,,  
baba CP □ 

Corollary 2.1. (i) A Hamilton-Poisson realization of the Rikitake-Hamilton system )4.2(  

 is  ),,( 3 kk HP R  with the Casimir  ),,( 3
RR

CC k
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  (ii) A Hamilton-Poisson realization of the Rabinovich system )4.2(   is  ),,( 3

HPR  with the 

Casimir  ),,( 3
RR

CC  where 
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Proof. The above assertions follows from Proposition 1.2  by replacement of parameters 

a,,, 321   and  b  with the corresponding values. □ 
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Proposition 2.2. The functions ),,(, 3

,, RR
CCH baba


g iven by )7.2(  and )8.2(   are constants of the 

motion (first integrals) for the dynamics ).1.2(   

Proof.  Indeed,  
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Similarly, we have .0/, dtdC ba


□ 

Remark 2.3. Since 


baH ,  and  


baC ,  are first integrals, it follows that the trajectories of 

motion of the dynamics )1.2(   are intersections of the surfaces: 

constant2)()())(( 323
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 constant.))(()()( 23
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3  xbaxaxb  □ 

 

III. FRACTIONAL EULER TOP SYSTEM WITH TWO LINEAR CONTROLS 
 

Let  )(RCf  and  .0,  qq R  The q order Caputo differential operator [5], 

is described by  ,0 ),()( )(   qtfItfD mqmq

t  where )()( tf m
 represents the m order 

derivative of the function  ,f  
Nm  is an integer such that mqm 1  and 

qI   is 

the q order Riemann-Liouville integral operator [13], which is expressed as follows: 

,0      ,)()(
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where   is the Euler Gamma function. If  ,1q  then ./)(1 dtdftfDt   

In this paper we suppose that  ].1,0(q  

The  fractional Euler top system with two linear controls associated to dynamics )1.2(  

is defined by the following set of fractional differential equations: 
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where  Rbai ,,  for  .3,1i   

Example 3.1. (i) If in )1.3(   we take  )1,1,(  k  with 0k  and  ,R ba   then then one 

obtains the fractional Rikitake-Hamilton system, given by: 

)2.3(           .     ;       ; 21313122321 xxxDxxxxDxxkxxD q

t

q

t

q

t    

(ii)  For  )1,1,1(   and  ,R ba  the system )1.3(   becomes: 

)3.3(            .     ;       ; 21313122321 xxxDxxxxDxxxxD q

t

q

t

q

t    

The system )3.3(  is called the fractional Rabinovich system with two linear controls. 

For ,0  it is the fractional Rabinovich system. □ 

Proposition 3.1. The equilibrium states of the fractional Euler top system )1.3(   are 

given as the union of the following three families: 
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Proof.  The equilibrium states are solutions of the equations ,3,1,0)(  ixf i
 where  

131
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11 )(   ,)( bxxxxfaxxxxf     and  .)( 21

33 xxxf  □ 

Let us we present the study of fractional stability of equilibrium states for the system ).1.3(  Finally, we will 

discuss how to stabilize the unstable equilibrium states of system )1.3(   

via fractional order derivative. For this study we apply the Matignon's test [10]. 

The Jacobian matrix associated to system )1.3(  is: 
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Proposition 3.2. ([10]) Let ex  be an equilibrium state of system )1.3(  and )(, eba xJ  be 

the Jacobian matrix )(, xJ ba  evaluated at ex . 

(i)  ex   is locally asymptotically stable, iff all eigenvalues of the matrix )(, eba xJ  satisfy: 

.
2

  |)))((arg(| ,
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 (ii)  ex   is locally stable, iff  either it is asymptotically stable, or the critical eigenvalues 

of  )(, eba xJ  which satisfy 
2

  |)))((arg(| ,




q
xJ eba    have geometric multiplicity one. □ 

Proposition 3.3. The equilibrium states 3,1, iem

i
  are unstable ).1,0()(  q  
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Since  
2

0)arg( 1




q
   for all  ),1,0(q  by Proposition 3.1 follows that the equilibrium states 

3,1, iem

i   are unstable for all  ).1,0(q □ 

In the case when ex  is a unstable equilibrium state of the fractional system ),1.3(  we associate to )1.3(   a new 

fractional system, called the perturbed fractional Euler top 

system with two linear controls for the equilibrium state .ex  

If one selects the parameters which then make the eigenvalues of Jacobian matrix 
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of the perturbed fractional system associated to system )1.3(   for the equilibrium state ex  satisfy one of the 

conditions from Proposition 3.2, then the trajectories of them asymptotically approaches the unstable 

equilibrium state ex   in the sense that ,0||)(||lim  et xtx  where ||||    is the Euclidean norm. 

The perturbed fractional Euler top system with two linear controls for the equilibrium 

state  ),0,(
2

1


b
mem   is defined by: 
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where  R1211,cc  are real constants. 

The Jacobian matrix of the perturbed fractional Euler top system )4.3(   for 
me1  is 
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Proposition 3.4. Let be the perturbed fractional Euler top system ).4.3(  

(i) Let 032   and .Rm   

(1)  If  ,0 ,0 1211  cc  then 
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is  ].))[(()( 2

32

2

12111 mccp    The roots of the characteristic equation 0)(1 p  

are ,111 c   .|| 32123,2  mc    

(i) Case  .032   Then  ,111 c   .|| 32123,2  imc   

(i.1)  We suppose that 011 c  and .0 12 c   In this case we have 01   and .0)Re( 3,2   Since  

,
2

  |)arg(|



q

i  3,1i   for all  ),1,0(q  by  Proposition 3.2(i), it implies that  
me1   is locally 

asymptotically stable for all .Rm  

(i.2)  For 011 c  and ,0 12 c  we have 01   and  .0)Re( 3,2   Applying Proposition 3.2(i), 
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me1   is locally asymptotically stable, for  ,0 1qq   where .|
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Hence, the assertion (i.2) holds. If ,1qq   then  
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me1   is unstable for all .Rm  Therefore, the assertions (i) hold. 
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me1  is unstable. 

(ii.2)  Let 011 c  and . 12 Rc  Since ,01    ),,( 12111, cceJ m

ba   has at least a positive 

eigenvalue and so 
me1  is unstable .)( R m   Hence, the assertion (ii) holds. □ 

If in )4.3(   we take )1,1,(  k  with 0k  and  , Rba    then one 

obtains the perturbed fractional Rikitake-Hamilton system for ).,0,(1 mem   

Corollary 3.1.  Let be the perturbed fractional Rikitake-Hamilton system for ).,0,(1 mem   If 011 c  and 

,0 12 c  then  
me1   is asymptotically stable  R m)(   and ).1,0(q  

Proof. Since  ,0132   the assertion follows from Proposition 3.4(i). □ 
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where  R2221,cc  are real constants. 

The Jacobian matrix of the perturbed fractional Euler top system )5.3(   for 
me2  is 
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Proposition 3.5. Let be the perturbed fractional Euler top system ).5.3(  

(i)   Let  031   and .Rm   
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Applying the same reasoning as in the demonstration of Proposition 4.3  it is easy to prove that the the 

assertions (i) and (ii) hold. □ 

If in )5.3(   we take )1,1,1(   and  ,R ba  then one obtains the perturbed fractional 

Rabinovich system for ).,,0(2  mem
 

Corollary 3.2.  Let be the perturbed fractional Rabinovich system for ).,,0(2  mem
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where  R3231,cc  are real constants. 

The Jacobian matrix of the perturbed fractional Euler top system )6.3(   for  
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Proposition 3.6. Let be the perturbed fractional Euler top system ).6.3(  

(i)   Let  0))(( 21  bmam   and .Rm   

(1)  If  ,0 ,0 3231  cc  then  
me3   is asymptotically stable );1,0()(  q  
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(2)  If  ,0 ,0 3231  cc  then  
me3   is asymptotically stable ),,0()( 3qq  where 

|
||

|))((|
 arctan|

2

31

21

3
c

bmam
q







  and it is stable for .3qq   

 (ii)   Let  .0))(( 21  bmam   If  0 ,0 3231  cc  and ,))(( 2

3121 cbmam     then  
me3   is 

asymptotically stable for all  ).1,0(q  

Proof.  Let be )(3 p  the characteristic polynomial of  matrix  ),,,( 32313, cceJ m

ba  where 

)].)(())[(()( 21

2

31323 bmamccp    The roots of equation 0)(3 p   are 

,321 c   ,||313,2 dc   where  ).)(( 21 bmamd    

(i) Case  .0d  Then  ,321 c   .||313,2 dic   

(i.1)  We suppose that 032 c  and .0 31 c   Then 01   and .0)Re( 3,2   Since  

,
2

  |)arg(|



q

i  3,1i   for all  ),1,0(q  by  Proposition 3.2(i), it implies that  
me3   is locally 

asymptotically stable for all .Rm  

(i.2)  For 032 c  and 0 31 c 011 c  and ,0 12 c  we have 01   and  .0)Re( 3,2   Applying 

Proposition 3.2(i), 
me3  is locally asymptotically stable, for  ,0 3qq   where 

.|
||

||
 arctan|

2

31

3
c

d
q


  Therefore, the assertion (i.2) holds. If ,3qq   then  
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(i.3)  Let  032 c  and . 31 Rc  then 01   and   ),,( 32313, cceJ m

ba  has at least a positive 

eigenvalue. Hence,   
me3   is unstable for all .)( R m  Therefore, the assertions (i) hold. 

(ii)  Case  .0d  Then    ,321 c   .||313,2 dc   In this case, 3,1, ii  are all negative if and 

only if 0 ,0 3231  cc   and .))(( 2

3121 cbmam    It follows that  
me3   is asymptotically stable for 

all ).1,0(q □ 

If in )6.3(   we take ),,,( 123123 aaaaaa   then one obtains the perturbed 

fractional rigid body equations with two linear controls  for ).,0,0(3 mem   

Corollary 3.3.  Let be the perturbed fractional rigid body equations with two linear controls for 

).,0,0(3 mem   If ,0 ,0 3231  cc  then  
me3   is asymptotically stable for all 

Rm   satisfying the 

condition     0)()( 3123  bmaaamaa  and ).1,0(q  

Proof. Since  ,0))(( 3123  aaaa  the assertion follows from Proposition 3.6 (i). □ 

Example 3.2. (i) Let be the perturbed fractional Rikitake-Hamilton system for ).,0,(1 mem   For 

,75.0 ,1 ,2 ,1 1211  mcc   the conditions of Corollary 3.1 are achieved. Then  )1,0,75.0(1 e  

is asymptotically stable ).1,0()(  q   

(ii) Let be perturbed fractional Rabinovich system for ).,,0(2  mem
 If we select 

5.0 ,3 ,2 2221  cc   and  ,75.0m  then the conditions of Corollary 3.2 are achieved. 

Then  )5.0,75.0,0(2 e   is asymptotically stable for ).1,0(q □ 
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IV. NUMERICAL INTEGRATION OF FRACTIONAL MODEL )1.4(  

 

The fractional differential systems )6.3()4.3(    can be written in the general form: 
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where  R321 ,, kkk  are real constants.  

The fractional dynamics )1.4(   is called the  perturbed fractional Euler top system 

with two linear controls for the equilibrium state  ).,,( 321

eeee xxxx     

For example, if in the system )1.4(   we take  123,2111 , ckck    and 
m

e ex 1  one obtains the perturbed 

fractional Euler top system )4.3(   for the equilibrium state  .1

me  

Consider the fractional differential equations 
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Since the functions 3,1),( itFi   are continuous, then the initial value problem 

)2.4(   is equivalent to nonlinear Volterra integral equation of the second order [5], which 

is given as follows: 

)3.4(          .0   , 3,1       ,))(),(),(()(
)(

1
)(

0

3211

0 


 
 qidssxsxsxFst

q
xtx

t

i

qii  

Diethelm et al. used the predictor-corrector scheme [4], based on the Adams- 

Moulton algorithm to integrate the equations ).3.4(   

We apply this scheme to fractional system  ).1.4(  For this, let  nht
N

h n   ,


  for 

.,...,1,0 Nn   

The perturbed fractional system )1.4(  can be integrated as follows: 
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The above scheme given by the relations )4.4(   is called the Moulton-Adams algorithm 

for perturbed fractional system )1.4(   [4]. 

The error estimate for the algorithm described by )4.4(   is 

   ).(3,1|][][max 1

0



  qi

p

i

Nj hOijxjx  

Let us we apply the algorithm )4.4(  and software Maple 11, to integrate two perturbed 

fractional Euler top systems with two linear controls of type ).1.4(   For this, we take 

502,500,01.0,01.0  tNh   and the initial conditions )),0(),0(),0(()0( 321 xxxx   where 

.3,1,)0(  ixx i

e

i   

These considerations are exemplified in the following cases. 

(1)  Let be the fractional model )1.4(   for the equilibrium state ),0,(1 mem   associated to Rikitake-

Hamilton system )4.2(   with  75.0m  and  ,1  which has discussed in Example 3.2. (i).  In the 

relations )4.4(   we take: 

0,75.0,2,1,1,1,1,1,5.0 21

321321  ee xxkkkba and .13 ex  

In the coordinate system ,321 xxOx  the orbits of solutions of fractional Rikitake- 

Hamilton model )1.4(   for the equilibrium state )1,0,75.0(1 e  have the representations 

given in the figures Fig.1 (for  75.0q ) and  Fig. 2 (for 1q ). 

 

Fig.1. Orbits  )(),(),( 321 nxnxnx  of  Rikitake model for 75.0q  
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Fig. 2. Orbits   )(),(),( 321 nxnxnx  of Rikitake model for 1q  

 

(2) Let be the fractional model )1.4(   for the equilibrium state ),,0(2  mem
 

associated to Rabinovich system )5.2(   with  75.0m  and ,5.0 which has presented in Example 3.2. 

(i).  In the relations )4.4(   we take: 

75.0,0,3,2,5.0,5,0,1,1,1 21

231321  ee xxkkkba  and .5.03 ex  

In the coordinate system ,321 xxOx  the orbits of solutions of fractional Rabinovich 

model )1.4(   for the equilibrium state )5.0,75.0,0(2 e  have the representations given 

in the figures Fig.3 (for  75.0q ) and  Fig. 4 (for 1q ). 

 

Fig.3. Orbits  )(),(),( 321 nxnxnx  of Rabinovich model for 75.0q  
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Fig. 4. Orbits   )(),(),( 321 nxnxnx  of  Rabinovich model for 1q  

 

The numerical simulations show the validity of the theoretical analysis. 

 

V. CONCLUSIONS. 

The dynamics of the fractional Euler top system with two control parameters )1.3(  was studied. The 

analysis of the fractional stability of for the perturbed fractional model associated to system )1.3(   has 

investigated. Finally, the numerical simulations for solutions of perturbed fractional Rikitake-Hamilton system 

and perturbed fractional Rabinovich system are given. □  
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