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I. INTRODUCTION 

In this paper, we study the following nonlinear problem in which the constraints are formed as fuzzy relational 

equations defined by Hamacher t-norm: 

min ( )

[0,1]n

f x

A x b

x

 



(1) 

where {1,2,..., }I m , {1,2,..., }J n , 
nmijaA  )( , 10  ija  ( i I  and j J  ), is a fuzzy matrix, 

1( )i mb b  ,0 1ib  (

i I  ), is an m –dimensional fuzzy vector, and “ ” is the max-Hamacher composition, that is,  

0 0

( , ) ( , )
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x y xy







 

  


  
    

 

in which 0  . 

If
ia is the i ‟th row of matrix A , then problem (1) can be expressed as follows: 

min ( )

( , ) ,

[0,1]

i i

n

f x

a x b i I

x

  



 

where the constraints mean: 
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ABSTRACT:Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose 

members are decreasing functions of the parameter. In this paper, we study a nonlinear optimization 

problem constrained byspecial system of fuzzy relational equations(FRE)in which fuzzy t-norms are 

considered as the members of the Hamacher family. The resolution of the feasible solutions setis firstly 

investigated when it is defined with max-Hamacher composition.Also, some necessary and sufficient 

conditions are presented for determining the feasibility and some procedures are proposed for simplifying 

the problem. Based on thetheoretical properties of the problem, a genetic algorithm is used, which 

preserves the feasibility of new generated solutions. Moreover, a method is presented to generate feasible 

max-Hamacher FREs as test problems for evaluating the performance of our algorithm. The proposed 

method has been compared with Lu and Fang’s algorithm. The obtained results confirm the high 

performance of the proposed method in solving such nonlinear problems. 

KEYWORDS: Fuzzy relational equations, nonlinear optimization, genetic algorithm. 
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As mentioned, Members of the Hamacher family of t-norms are decreasing functions of the parameter 

 and each member of this familyis actually a strict t-norm [8]. In [44] some new operational rules of hesitant 

fuzzy sets were introduced based on the Hamacher t-norm and t-conorm, in which a family of hesitant fuzzy 

Hamacher operators was proposed for aggregating hesitant fuzzy information. In [45], the mono-tonicity of 

alternative scores derived from Hamacher arithmetic and geometric aggregation operators. They also 

investigated the relationship between alternative scores generated by Hamacher arithmetic and geometric 

aggregation operators. In [46], the authors focused on examining the general parametric Hamacher t-norm, 

where the free parameter quite essentially influences the quality of modeling and the learning capability of the 

model identification system. 

The theoryof fuzzy relational equations was firstly proposed by Sanchez [55].He introduced a FRE 

whit max-min composition and applied the model to medical diagnosis in Brouwerian logic.Nowadays, it is 

well-known that many issues associated with a body knowledge can be treated as FRE problems [47]. In 

addition to such applications, FRE theory has been applied in many fields including fuzzy control, discrete 

dynamic systems, prediction of fuzzy systems, fuzzy decision making, fuzzy pattern recognition, fuzzy 

clustering, image compression and reconstruction, and so on. Pedrycz [48] categorized and extended two ways 

of the generalizations of FRE in terms of sets under discussion and various operations which are taken into 

account. Since then, many theoretical improvements have been investigated and many applications have been 

presented [5,11,24,28,32,41,49,51,52,60,62,68].  

The solvability and the finding of solutions set are the primary (and the most fundamental) subject 

concerning FRE problems. Many studies have reported fuzzy relational equations with max-min and max-

product compositions. Both compositions are special cases of the max-triangular-norm (max-t-norm) 

[2,3,37,38,43]. It is well-known that the solution set of FRE (if it is nonempty) defined by continuous max-t-

norm composition is often a non-convex set that is completely determined by one maximum solution and a finite 

number of minimal solutions [6]. Lin et al. [38] demonstrated that all systems of max-continuous t-norm fuzzy 

relational equations, for example, max-product, max-continuous Archimedean t-norm and max-arithmetic mean 

are essentially equivalent, because they are all equivalent to the set covering problem. Over the last decades, the 

solvability of FRE defined with different max-t compositions has been investigated by many researches 

[50,53,54,56,58,59,63,67,71]. It is worth to mention that Li and Fang [36] provided a complete survey and a 

detailed discussion on fuzzy relational equations. They studied the relationship among generalized logical 

operators involved in the construction of FRE and introduced the classification of basic fuzzy relational 

equations.  

Optimizing an objective function subjected to a system of fuzzy relational equations or inequalities 

(FRI)is one of the most interesting and on-going topics among the problems related to the FRE (or FRI) theory 

[1,9,19-27,31,34,39,57,64,69]. By far the most frequently studied aspect is the determination of a minimizer of a 

linear objective function and the use of the max-min composition [1,20].So, it is an almost standard approach to 

translate this type of problem into a corresponding 0-1 integer linear programming problem, which is then 

solved using a branch and bound method [10,65]. In [33] an application of optimizing the linear objective with 

max-min composition was employed for the streaming media provider seeking a minimum cost while fulfilling 

the requirements assumed by a three-tier framework. Chang and Shieh [1] presented new theoretical results 

concerning the linear optimization problem constrained by fuzzy max-min relation equations by improving an 

upper bound on the optimal objective value. The topic of the linear optimization problem was also investigated 

with max-product operation [19,26,40]. Loetamonphong and Fang defined two sub-problems by separating 

negative and non-negative coefficients in the objective function and then obtained the optimal solution by 

combining those of the two sub-problems [40]. Also, in [26] and [19], some necessary conditions of the 

feasibility and simplification techniques were presented for solving FRE with max-product composition. 

Moreover, some studies have determined a more general operator of linear optimization with replacement of 

max-min and max-product compositions with a max-t-norm composition [17,25,34,57], max-average 

composition [31,64] or max-star composition [22]. 

Recently, many interesting generalizations of the linear and non-linear programming problems 

constrained by FRE or FRI have been introduced and developed based on composite operations and fuzzy 

relations used in the definition of the constraints, and some developments on the objective function of the 
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problems [4,7,12,20,35,39,66].For instance, the linear optimization of bipolar FRE was studied by some 

researchers where FRE was defined with max-min composition [12] and max-Lukasiewicz composition [35,39]. 

In [35] the authors introduced the optimization problem subjected to a system of bipolar FRE defined as 

( , , ) { [0,1] : }mX A A b x x A x A b        where 1i ix x  for each component of 
1( )i mx x   and the notations „‟

 ‟‟‟ and „‟  ‟‟ denote max operation and the max-Lukasiewicz composition, respectively. They translated the 

problem into a 0-1 integer linear programming problem which is then solved using well-developed techniques. 

In [39], the foregoing problem was solved by an analytical method based on the resolution and some structural 

properties of the feasible region (using a necessary condition for characterizing an optimal solution and a 

simplification process for reducing the problem). In [21] the authors focused on the algebraic structure of two 

fuzzy relational inequalities 1A x b  and 2D x b  , and studied a mixed fuzzy system formed by the two 

preceding FRIs, where  is an operator with (closed) convex solutions. Yang [70] studied the optimal solution 

of minimizing a linear objective function subject to fuzzy relational inequalities where the constraints defined as 

1 1 2 2 ...i i in n ia x a x a x b        for 1,...,i m and min{ , }a b a b  . He presented an algorithm based on 

some properties of the minimal solutions of the FRI.Ghodousianet al. [16,20] introduced FRI-FC problem 

min{ : , [0,1] }T nc x A x b x ° , where  is max-min composition and “ ° ” denotes the relaxed or fuzzy 

version of the ordinary inequality “”. 

Another interesting generalizations of such optimization problems are related to objective function. Wu et al. 

[66] represented an efficient method to optimize a linear fractional programming problem under FRE with max-

Archimedean t-norm composition. Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem 

by considering fuzzy coefficients. Dubey et al. studied linear programming problems involving interval 

uncertainty modeled using intuitionistic fuzzy set [7]. If the objective function is   
1

( ) max min ,
n

i i
i

z x c x


 with 

[0,1]ic  , the model is called the latticized problem [61]. Also, Yang et al. [69] introduced another version of the 

latticized programming problem subject to max-prod fuzzy relation inequalities with application in the 

optimization management model of wireless communication emission base stations.  The latticized problem was 

defined by minimizing  objective function 
1 1( ) ... nz x x x x    subject to feasible region 

( , ) { [0,1] : }nX A b x A x b    where „‟  ‟‟ denotes fuzzy max-product composition.They also presented an 

algorithm based on the resolution of the feasible region.  On the other hand, Lu and Fang considered the single 

non-linear objective function and solved it with FRE constraints and max-min operator [42]. They proposed a 

genetic algorithm for solving the problem.Hassanzadeh et al. [29] used the same GA proposed by Lu and Fang 

to solve a similar nonlinear problem constrained by FRE and max-product operator. Also, Ghodousian et al. 

[14,15,18] presented GA algorithms to solve the non-linear problem with FRE constraints defined by 

Lukasiewicz, Dubois –Prade and Sugeno-Weber operators. 

Generally, there are three important difficulties related to FRE or FRI problems. Firstly, in order to 

completely determine FREs and FRIs, we must initially find all the minimal solutions, and the finding of all the 

minimal solutions is an NP-hard problem. Secondly, a feasible region formed as FRE or FRI [21] is often a non-

convex set. Finally, FREs and FRIs as feasible regions lead to optimization problems with highly non-linear 

constraints.Due to the above mentioned difficulties, although the analytical methods are efficient to find exact 

optimal solutions, they may also involve high computational complexity for high-dimensional problems 

(especially, if the simplification processes cannot considerably reduce the problem).  

In this paper, we use the genetic algorithm proposed in [14] for solving problem (1), which keeps the 

search inside of the feasible region without finding any minimal solution and checking the feasibility of new 

generated solutions.For this purpose, the paper consists of three main parts. Firstly, we describe some structural 

details of FREs defined by the Hamacher t-norm such as the theoretical properties of the solutions set, necessary 

and sufficient conditions for the feasibility of the problem,some simplification processes and the existence of an 

especial convex subset of the feasible region.Then, by utilizing the convex subset, the GA can easily generate a 

random feasible initial population. Finally, we provide some statistical and experimental results to evaluate the 

performance of our algorithm. Since the feasibility of problem(1) is essentially dependent on the t-norm 

(Hamacher t-norm) used in the definition of the constraints, a method is also presented to construct feasible test 

problems. More precisely, we construct a feasible problem by randomly generating a fuzzy matrix A  and a 

fuzzy vector b  according to some criteria resulted from the necessary and sufficient conditions.It is proved that 

the max-Hamacher fuzzy relational equations constructed by this method is not empty. Moreover, a comparison 

is made between the proposed GA and the genetic algorithms presented in [29] and [42].  
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The remainder of the paper is organized as follows. Section 2 takes a brief look at some basic results on 

the feasible solutions set of problem (1). In Section 3, the GA algorithm is briefly described. Finally, in Section 

4 the experimental results are demonstrated and a conclusion is provided in Section 5.  

II. BASIC PROPERTIES OF MAX-HAMACHER FRE 

2.1. Characterization of feasible solutions set 

This section describes the basic definitions and structural properties concerning problem (1) that are used 

throughout the paper. For the sake of simplicity, let ( , )
H

i iT
S a b denote the feasible solutions set of i „th 

equation, that is,   1
( , ) [0,1] : max ( , )

H

n
n

i i H ij j iT j
S a b x T a x b




   . Also, let ( , )

HT
S A b denote the 

feasible solutions set of problem (1). Based on the foregoing notations, it is clear that 

( , ) ( , )
H H

i iT T
i I

S A b S a b 



 . 

 

Definition 1. For each i I , we define  :i ij iJ j J a b   . 

 

According to definition 1, we have the following lemmas, which are easily proved by the monotonicity and 

identity law of t-norms, definition 1 and the definition of Frank t-norm. 

Lemma 1. Let i I . If ij J , then ( , )H ij j iT a x b  , [0,1]jx  . 

Lemma 2. Let i I and ij J . 

(a) If 

[ (1 ) ]

(1 )(1 )

ij i

j

ij ij i

a b
x

a a b

 



 


  
and 0ib  , then ( , )H ij j iT a x b  . 

(b) If 

[ (1 ) ]

(1 )(1 )

ij i

j

ij ij i

a b
x

a a b

 



 


  
and 0ib  , then ( , )H ij j iT a x b  . 

(c) If

[ (1 ) ]

(1 )(1 )

ij i

j

ij ij i

a b
x

a a b

 



 


  
and 0ib  , then ( , )H ij j iT a x b  . 

(d) If 0ij ia b  , then ( , )H ij j iT a x b  , [0,1]jx  . 

(e) If  0ij ia b  , then ( , )H ij j iT a x b   for 0jx  , and ( , )H ij j iT a x b  for 0 1jx  . 

 

Lemma 3. For a fixed i I , ( , )
H

i iT
S a b  if and only if iJ  .  

Proof.The proof is similar to the proof of Lemma 3 in [14].□ 

 

Definition 2. Suppose that i I and ( , )
H

i iT
S a b   (hence, iJ  from lemma 3).  Let 

1 2
ˆ ˆ ˆ ˆ[( ) ,( ) ,..., ( ) ] [0,1]n

i i i i nx x x x  where the components are defined as follows: 

[ (1 ) ]
, 0

(1 )(1 )

ˆ( ) 0 , 0

1

ik i
i i

ik ik i

i k i ik i

a b
k J b

a a b

x k J a b

otherwise

 



 
    


   




, k J   
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Also, for each ij J , we define 1 2( ) [ ( ) , ( ) ,..., ( ) ] [0,1]n

i i i i nx j x j x j x j 
   

such that  

 

[ (1 ) ]
0

(1 )(1 )( )

0

ik i
i

ik ik ii k

a b
b and k j

a a bx j

otherwise

 



 
 

   




, k J   

Theorem 1. Let i I . If ( , )
H

i iT
S a b  , then ˆ( , ) [ ( ) , ]

H

i

i i i iT
j J

S a b x j x






 . 

Proof. For a more general case, see Corollary 2.3 in [21].□ 

Definition 3. Let ˆ
ix ( i I ) be the maximum solution of ( , )

H
i iT

S a b . We define ˆmin{ }i
i I

X x


 . 

Definition 4. Let : ie I J so that ( ) ie i j J  , i I  , and let E be the set of all vectors e . For the 

sake of convenience, we represent each e E  as an m –dimensional vector 1 2[ , ,..., ]me j j j in which 

( )kj e k . 

Definition 5. Let 1 2[ , ,..., ]me j j j E  . We define 1 2( ) [ ( ) , ( ) ,..., ( ) ] [0,1]n

nX e X e X e X e  , where

   ( ) max ( ( )) max ( )j i j i i j
i I i I

X e x e i x j
 

 
 

, j J  . 

 

From the relation ( , ) ( , )s s
F F

i iT T
i I

S A b S a b


 and Theorem 1, the following theorem is easily attained.  

Theorem 2. ( , ) [ ( ) , ]
HT

e E

S A b X e X



 . 

As a consequence, it turns out that X is the unique maximum solution and ( )X e „s ( e E ) are the minimal 

solutions of ( , )
HT

S A b . Moreover, we have the following corollary that is directly resulted from theorem 2. 

Corollary 1(first necessary and sufficient condition). ( , )
HT

S A b  if and only if ( , )
HT

X S A b . 

 

Example 1. Consider the problem below with Hamacher t-norm 

0.9 0.4 0.6 0.7 0.4 0.4 0.7

0.5 0.1 0.2 0.3 0.5 0.2 0.5

0.2 0.8 0.4 0.4 0.6 0.2 0.6

0.9 0.7 0.3 0.8 0.8 0.5 0.8

0    0    0    0.2    0    0 0

x

   
   
   
   
   
   
     

 

where
2( , ) ( , )

2
H

xy
x y T x y

x y xy
  

  
(i.e., 2  ).By definition 1, we have  1 1,4J  ,  2 1,5J 

,  3 2,5J  ,  4 1,4,5J   and  5 1,2,3,4,5,6J  . The unique maximum solution and the minimal 

solutions of each equation are obtained by definition 2 as follows:  

1̂ [0.7938 , 1 , 1 , 1 , 1 , 1]x  , 2
ˆ [1 , 1 , 1 , 1 , 1 , 1]x  , 3

ˆ [1 , 0.7826 , 1 , 1 , 1 , 1]x  ,

4
ˆ [0.8980 , 1 , 1 , 1 , 1 , 1]x  , 5

ˆ [1 , 1 , 1 , 0 , 1 , 1]x  . 

1(1) [0.7938 , 0 , 0 , 0 , 0 , 0]x 


, 1(4) [0 , 0 , 0 , 1 , 0 , 0]x 


, 

2(1) [1 , 0 , 0 , 0 , 0 , 0]x 


, 
2(5) [0 , 0 , 0 , 0 , 1 , 0]x 


 

3(2) [0 , 0.7826 , 0 , 0 , 0 , 0]x 


, 3(5) [0 , 0 , 0 , 0 , 1 , 0]x 
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4(1) [0.8980 , 0 , 0 , 0 , 0 , 0]x 


,
4(4) [0 , 0 , 0 , 1 , 0 , 0]x 


, 4(5) [0 , 0 , 0 , 0 , 1 , 0]x 


 

 5( ) [0 , 0 , 0 , 0 , 0 , 0] , 1,2,3,4,5,6x j j 


 

Therefore, by theorem 1 we have 1 1 1 1 1 1
ˆ ˆ( , ) [ (1), ] [ (4), ]

HT
S a b x x x x 

 
 , 

2 2 2 2 2 2
ˆ ˆ( , ) [ (1), ] [ (5), ]

HT
S a b x x x x 

 
 , 3 3 3 3 3 3

ˆ ˆ( , ) [ (2), ] [ (5), ]
HT

S a b x x x x 
 

 and

4 4 4 4 4 4 4 4
ˆ ˆ ˆ( , ) [ (1), ] [ (4), ] [ (5), ]

HT
S a b x x x x x x 

  
  and 5 5 1 6 5

ˆ( , ) [ , ]
HT

S a b x  0  where 1 60  is a 

zero vector.From definition 3, [0.79381 , 0.78261 , 1 , 0 , 1 , 1]X  . It is easy to verify that 

( , )
HT

X S A b . Therefore, the above problem is feasible by corollary 1. Finally, the cardinality of set E is 

equal to 24 (definition 4). So, we have 24 solutions ( )X e associated to 24 vectors e . For example, for 

[1,5,5,5,2]e  , we obtain  1 2 3 4 5( ) max (1), (5), (5), (5), (2)X e x x x x x
    

 from definition 5 that 

means ( ) [0.79381 , 0 , 0 , 0 , 1 , 0]X e  . 

 

2.2. Simplification processes 

In practice, there are often some components of matrix A that have no effect on the solutions to problem (1). 

Therefore, we can simplify the problem by changing the values of these components to zeros. For this reason, 

various simplification processes have been proposed by researchers. We refer the interesting reader to [21] 

where a brief review of such these processes is given. Here, we present two simplification techniques based on 

the Hamacher t-norm. 

 

Definition 6. If a value changing in an element, say ija , of a given fuzzy relation matrix A has no effect on the 

solutions of problem (1), this value changing is said to be an equivalence operation. 

 

Corollary 2. Suppose that 
0 0

( , )H ij j iT a x b  , ( , )
HT

x S A b  . In this case, it is obvious that 

 
1

max ( , )
n

H ij j i
j

T a x b


 is equivalent to  

0

1
max ( , )

n

H ij j i
j
j j

T a x b




 ,that is, “resetting 
0ija to zero” has no 

effect on the solutions of problem (1) (since component 
0ija only appears in the i „th constraint of problem 

(1)). Therefore, if 
0 0

( , )H ij j iT a x b  , ( , )
HT

x S A b  , then “resetting 
0ija to zero” is an equivalence 

operation.  

 

Lemma 4 (first simplification). Suppose that 0 ij J , for some i I and 0j J . Then, “resetting 
0ija to 

zero” is an equivalence operation. 

Proof. From corollary 2, it is sufficient to show that 
0 0

( , )H ij j iT a x b  , ( , )
HT

x S A b  . But, from lemma 1 

we have 
0 0

( , )H ij j iT a x b  , 
0

[0,1]jx  .  Thus, 
0 0

( , )H ij j iT a x b  , ( , )
HT

x S A b  . □ 

 

Lemma 5 (second simplification). Suppose that 
10 ij J and 

1
0ib  , where 1i I and 0j J . If at least 

one of the following conditions hold, then “resetting 
1 0i ja to zero” is an equivalence operation: 

(a) There exists some 2i I ( 1 2i i ) such that 
20 ij J , 

2
0ib  and 

2 0 2 1 0 1

2 0 2 0 2 1 0 1 0 1

[ (1 ) ] [ (1 ) ]

(1 )(1 ) (1 )(1 )

i j i i j i

i j i j i i j i j i

a b a b

a a b a a b

   

 

   


     
. 
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(b) There exists some 2i I ( 1 2i i ) such that 
2

0ib  and 
2 0

0i ja  . 

Proof. (a)Similar to the proof of lemma 4, we show that 
1 0 0

( , )H i j j iT a x b  , ( , )
HT

x S A b  . Consider an 

arbitrary feasible solution ( , )
HT

x S A b . Since ( , )
HT

x S A b , it turns out that 
1 0 0 1

( , )H i j j iT a x b  never 

holds. So, assume that 
1 0 0 1

( , )H i j j iT a x b  . Since 
1

0ib  , from lemma 2 we conclude that 

1 0 1

0

1 0 1 0 1

[ (1 ) ]

(1 )(1 )

i j i

j

i j i j i

a b
x

a a b

 



 


  
.So, by the assumption, we have 

2 0 2

0

2 0 2 0 2

[ (1 ) ]

(1 )(1 )

i j i

j

i j i j i

a b
x

a a b

 



 


  
. 

Therefore, lemma 2 (part (a)) implies
2 0 0 2

( , )H i j j iT a x b  that contradicts ( , )
HT

x S A b . 

(b) By the assumption, we have
20 ij J . Now, the result similarly follows by a simpler argument.  □ 

 

We give an example to illustrate the above two simplification processes. 

 

Example 2. Consider the problem presented in example 1.From the first simplification (lemma 4), “resetting the 

following components ija to zeros” are equivalence operations: 12a , 13a , 15a , 16a ; 22a , 23a , 24a , 26a ; 31a , 33a , 34a ,

36a ; 42a , 43a , 46a ; in all of these cases, ij ia b , that is, ij J . Also, from the second simplification (lemma 5, 

part (a)), we can change the values of components 21a and 41a to zeros.For example, 41 1a b  (i.e., 41 J ), 

4 0b  , 11 1a b  (i.e., 11 J ), 1 0b  and 

11 1 41 4

11 11 1 41 41 4

[ (1 ) ] [ (1 ) ]
0.7938 0.8980

(1 )(1 ) (1 )(1 )

a b a b

a a b a a b

   

 

   
  

     
 

Moreover, from lemma 5 (part (b)), we can also change the values of components 14a and 44a to zeros with no 

effect on the solutions set of the problem (since 
1 44 J J  , 0ib  ( 1,4i  ), and

5 0b  and
54 0a  ). 

 

In addition to simplifying the problem, a necessary and sufficient condition is also derived from lemma 5. 

Before formally presenting the condition, some useful notations are introduced. Let A denote the simplified 

matrix resulted from A after applying the simplification processes (lemmas 4 and 5). Also, similar to definition 

1, assume that  :i ij iJ j J a b    ( i I ) where 
ija denotes ( , )i j „th component of matrix A . The 

following theorem gives a necessary and sufficient condition for the feasibility of problem (1). 

 

Theorem 3 (second necessary and sufficient condition). ( , )
HT

S A b  if and only if iJ 
, i I  . 

Proof. Since ( , ) ( , )
H HT T

S A b S A b   from lemmas 4 and 5, it is sufficient to show that ( , )
HT

S A b  if and 

only if iJ 
, i I  . Let ( , )

HT
S A b  . Therefore, ( , )

H
i iT

S a b  , i I  , where ia

denotes i „th row of matrix A . Now, lemma 3 implies iJ 
, i I  . Conversely, suppose that 

iJ 
, i I  . Again, by using lemma 3 we have iJ 

, i I  . By contradiction, suppose that 

( , )
HT

S A b  . Therefore, ( , )
HT

X S A b  from corollary 1, and then there exists 0i I such that 

0 0
( , )

H
i iT

X S a b  . Since  
0 0

max ( , )
i

jH i j i
j J

T a X b





 (from lemma 1), we must have either 

 
0 0

max ( , )
i

jH i j i
j J

T a X b





 or  

0 0
max ( , )

i

jH i j i
j J

T a X b





 . Anyway, since 

0
ˆ

iX x  (i.e., 
0

ˆ( )j i jX x ,
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j J  ), we have    
0 0 0 0

0 0

ˆmax ( , ) max ( ,( ) )
i i

jH i j H i j i j i
j J j J

T a X T a x b 

 
 

 
  , and then the former case (i.e., 

 
0 0

max ( , )
i

jH i j i
j J

T a X b





 ) never holds. Therefore,  

0 0
max ( , )

i

jH i j i
j J

T a X b





  that implies 

0
0ib  and 

0 0
( , )jH i j iT a X b  , 

0i
j J   .  Hence, by lemma 2, we must have 0 0

0 0 0

[ (1 ) ]

(1 )(1 )

i j i
j

i j i j i

a b
X

a a b

 



 


  



 
, 

0i
j J   . On the other hand, 

0 0

0 0 0

[ (1 ) ]
1

(1 )(1 )

i j i

i j i j i

a b

a a b

 



 


  



 
, 

0i
j J   . Therefore, 1jX  , 

0i
j J   , 

and then from definitions 2 and 3, for each 
0i

j J  there must exists ji I such that either
jij J  and 

[ (1 ) ]
ˆ( )

(1 )(1 )

j j

j

j j j

i j i

j i j

i j i j i

a b
X x

a a b

 



 
 

  



 
 or 

jij J  and 0
j ji j ia b  . Until now, we proved that 

0
0ib  and for each 

0i
j J  , there exist ji I such that either 

jij J  and 

0 0

0 0 0

[ (1 ) ] [ (1 ) ]

(1 )(1 ) (1 )(1 )

j j

j j j

i j i i j i

i j i j i i j i j i

a b a b

a a b a a b

   

 

   


     

 

   
 (because, 

0 0

0 0 0

[ (1 ) ] [ (1 ) ]

(1 )(1 ) (1 )(1 )

j j

j j j

i j i i j i
j

i j i j i i j i j i

a b a b
X

a a b a a b

   

 

   
 

     

 

   
) or 0

jib  and 0
ji ja  . But in both cases, 

we must have 
0

0i ja  (
0i

j J   ) from the parts (a) and (b) of lemma 5, respectively. Therefore, 

0 0
0i j ia b   (

0i
j J   ) that is a contradiction. □  

 

Remark 1. Since ( , ) ( , )
H HT T

S A b S A b    (from lemmas 4 and 5), we can rewrite all the previous definitions 

and results in a simpler manner by replacing iJ with iJ ( i I ). 

 

III. THE PROPOSED GA 

In this section, the genetic algorithm proposed in [14] is briefly discussed. Since the feasible region of problem 

(1) is non-convex, a convex subset of the feasible region is firstly introduced. Consequently, the proposed GA 

can easily generate the initial population by randomly choosing individuals from this convex feasible subset. At 

the last part of this section, a method is presented to generate random feasible max-Yager fuzzy relational 

equations. 

 

3.1. Initialization  

The initial population is given by randomly generating the individuals inside the feasible region.For this 

purpose, we firstly find a convex subset of the feasible solutions set, that is, we find set F such that 

( , )
HT

F S A b  and F is convex. Then, the initial population is generated by randomly selecting individuals 

from set F .  

 

Definition 7. Suppose that ( , )
HT

S A b  . For each i I ,   let 1 2[( ) ,( ) ,..., ( ) ] [0,1]n

i i i i nx x x x 
   

where the components are defined as follows: 

[ (1 ) ]
0

(1 )(1 )( )

0

ik i
i i

ik ik ii k

a b
b and k J

a a bx

otherwise

 



 
 

   






, k J   
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Also, we define  max i
i I

X x





. 

Example 3. Consider the problem presented in example 1, where [0.7938 , 0.7826 , 1 , 0 , 1 , 1]X  . 

Also, according to example 2, the simplified matrix A is 

0.9    0     0     0     0      0

0       0     0     0     0.5   0

0    0.8     0     0     0.6   0

0       0     0     0     0.8   0

0       0     0    0.2   0      0

A

 
 
 
 
 
 
  

  

From definition 7, we have 

1 [0.7938 , 0 , 0 , 0 , 0 , 0]x 


, 2 [0 , 0 , 0 , 0 , 1 , 0]x 


, 3 [0 , 0.7826 , 0 , 0 , 1 , 0]x 


, 

4 [0 , 0 , 0 , 0 , 1 , 0]x 


 

, 5 [0 , 0 , 0 , 0 , 0 , 0]x 


 

, and then  
5

1
max [0.7938 , 0.7826 , 0 , 0 , 1 , 0]i

i
X x


 


.  Therefore, set [ , ]F X X is obtained 

as a collection of intervals: 

[ , ] [0.7938 , 0.7826 , [0,1] , 0 , 1 , [0,1]]F X X   

By generating random numbers in the corresponding intervals, we acquire one initial individual: 

[0.7938 , 0.7826 , 0.45 , 0 , 1 , 0.98]x  . 

According to lemma 6, the algorithm for generating the initial population is simply obtained as follows: 

 

Algorithm 1 (Initial Population). 

1. Get fuzzy matrix , fuzzy vector and population size .

2. If ( , ), then stop; the problem is infeasible (corollary1).

3. For i 1,2,...,

Generate a random dimensional solution ( ) i

H

pop

T

pop

A b S

X S A b

S

n pop i





 n the interval [ , ].

End

X X

 

 

3.2. Selection strategy 

Suppose that the individuals in the population are sorted according to their ranks from the best to worst, that is, 

individual ( )pop r has rank r .  The probability rP of choosing the r „th individual is given by the following 

formulas: 

1

pop

r
r S

kk

W
P

W





          ,     

2

1 1

21

2

pop

r

q S

r

pop

W e
q S

 
  

 
   

where  the weight to be a value of the Gaussian function with argument r , mean 1 , and standard deviation 

popq S , where q is a parameter of the algorithm.  

 

3.3. Mutation operator 

As usual, suppose that ( , )
HT

S A b  . So, from theorem 3 we have iJ 
, i I  , where 

 :i ij iJ j J a b    , i I  (see definition1 and remark 1).  
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Definition 8. Let  : 0iI i I b    .So, we define 

 : if  such that 1i iD j J i I j J J       
,where 

iJ denotes the cardinality of set iJ

.  

 

the mutation operator is defined as follows: 

 

Algorithm 2 (Mutation operator). 

0

1

0

1. Get the matrix , vector and a selected solution [ ,..., ].

2. While  

     2.1. Set .

     2.2. Randomly choose  ,and set 0.

2.3. IF   is feasible, go to Crossover operator;

n

j

A b x x x

D

x x

j D x

x



 



 



   

0 otherwise, set { }. D D j 

 

 

3.4. Crossover operator 

In section 2, it was proved that X is the unique maximum solution of ( , )
HT

S A b . By using this result, the 

crossover operator is stated as follows: 

 

Algorithm 3 (Crossover operator). 

1 1 1 1

2

1. Get the maximum solution , the new solution (generated by algorith 2) 

    and one parent ( ) (for some 1,2,..., ).

2. Generate a random number [0,1]. Set  (1 ) .

3. Let mi

pop

new

X x

pop k k S

x x X  







   



 

1

2 2

n ( ) ( )  and  ( ).

    Set  ( ) min ,1 .

popS

j
j k

new

pop k pop j d X pop k

x pop k d




  

 

 

 

3.5. Construction of test problems 

There are usually several ways to generate a feasible FRE defined with different t-norms. In what follows, we 

present a procedure to generate random feasible max- Hamacher fuzzy relational equations: 

 

Algorithm 4 (construction of feasible Max-Hamacher FRE). 
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1 21. Randomly select  columns { , ,..., }from = 1,2,..., .

2. Generate vector  whose elements are random numbers from [0,1].

3. For 1,2,...,

Assign a random number from [ ,1] to .

End

4. For 

i

m

i ij

m j j j J n

b

i m

b a

i



 

 

1,2,...,

               For each 1,2,..., { }

If  =0

                         Set 0.

                     Else

[ (1 ) ]
                          Set .

(1 )(1 )

              

i

i

i i

k

k j

ij i

ij ij i

m

k m i

b

a

a b
L

a a b

 





 



 


  

  1 2

( (1 ) )
           Assign a random number from [0 , ] to .                       

( 1)(1 )

               End

          End

     End

5. For each 1,2,..., and each { , ,..., }        

i

k
k j

k

m

L b
a

L L b

i m j j j j

 



 

  

   

          Assign a random number from [0,1] to .            

   End

ija

 

 

By the following theorem, it is proved that algorithm 4 always generates random feasible max-Hamacher fuzzy 

relational equations.   

 

Theorem 4. The solutions set ( , )
HT

S A b of FRE (with Hamacher t-norm) constructed by algorithm 4 is not 

empty. 

Proof. According to step 3 of the algorithm, i ij J , i I  . Therefore, iJ  , i I  . To complete 

the proof, we show that i ij J 
, i I  . By contradiction, suppose that the second simplification process 

reset 
iija to zero, for some i I . So, 0ib  and there must exists some k I ( k i ) such that either

i kj J , 0kb   and 

[ (1 ) ] [ (1 ) ]

(1 )(1 ) (1 )(1 )

i i

i i i i

k j k ij i

k j k j k ij ij i

a b a b

a a b a a b

   

 

   


     
or 0kb  and 0

ik ja  . In the 

former case, we note that 
( (1 ) )

( 1)(1 )i

k
k j

k

L b
a

L L b

 



 


  
, where 

[ (1 ) ]

(1 )(1 )

i

i i

ij i

ij ij i

a b
L

a a b

 



 


  
. Anyway, both 

cases contradict step 4. □ 

 

IV. EXPERIMENTAL RESULTS AND COMPARISON WITH RELATED WORKS 

In this section, we present the experimental results for evaluating the performance of our algorithm. 

Firstly, we apply our algorithm to 8 test problems described in Appendix A. The test problems have been 

randomly generated in different sizes by algorithm 4 given in section 3. Since the objective function is an 

ordinary nonlinear function, we take some objective functions from the well-known source: Test Examples for 

Nonlinear Programming Codes [30]. In section 5.2, we make a comparison against the related GAs proposed in 

[29] and [42]. To perform a fair comparison, we follow the same experimental setup for the parameters 0.5  , 
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0.01  , 0.995  and 1.005  as suggested by the authors in [29] and [42]. Since the authors did not 

explicitly reported the size of the population, we consider 50popS  for all the three GAs. As mentioned 

before, we set 0.1q  in relation (2) for the current GA. Moreover, in order to compare our algorithm with 

max-min GA [42] (max-product GA [29]), we modified all the definitions used in the current GA based on the 

minimum t-norm (product t-norm). For example, we used the simplification process presented in [42] for 

minimum, and the simplification process given in [19,29] for product. Finally, 30 experiments are performed for 

all the GAs and for eight test problems reported in Appendix B, that is, each of the preceding GA is executed 30 

times for each test problem. All the test problems included in Appendix A, have been defined by considering 

2   in HT 
. Also, the maximum number of iterations is equal to 100for all the methods. 

 

5.1. Performance of the max-Hamacher GA 

To verify the solutionsfound by the max-Hamacher GA, the optimal solutionsof the test problems are also 

needed. Since ( , )
HT

S A b is formed as the union of the finite number of convex closed cells (theorem 2), the 

optimal solutions are also acquired by the following procedure: 

1. Computing all the convex cells of the Hamacher FRE. 

2. Searching the optimal solution for each convex cell. 

3. Finding the global optimum by comparing these local optimal solutions. 

The computational results of the eight test problems (see Appendix A) are shown in Table 1 and Figures 1-8. In 

Table 1, the results are averaged over 30 runs and the average best-so-far solution, average mean fitness 

function and median of the best solution in the last iteration are reported.  

Table 2 includes the best results found by the max-Hamacher GA and the above procedure.According to Table 

2,the optimal solutions computed by the max-Hamacher GAand the optimal solutions obtained by the above 

procedure match very well. Tables 1 and 2, demonstrate the attractive ability of themax-Hamacher GAto detect 

the optimal solutions of problem (1). Also, the good convergence rate of the max-Hamacher GA could be 

concluded from Table 1 and figures 1-8. 

 

Table 1. Results of applying the max-Hamacher GA to the eight test problems of Appendix A. 

The results have been averaged over 30 runs. Maximum number of iterations=100. 
Test 
problems 

Average best-so-far      Median best-so-far Average mean fitness 

A.1 34.163872 34.163868 34.163887 

A.2 -0.4090829 -0.4090829 -0.4089404 

A.3 -1.0897527 -1.0897527 -1.0892696 

A.4 6.154911 6.154911 6.155172 

A.5 62.602713 62.599052 62.611324 

A.6 -0.235645 -0.235645 -0.235643 

A.7 -0.920109 -0.920109 -0.919835 

A.8 99.210416 99.210354 99.215563 

 

Table 2. Comparison of the solutions found by Max-Hamacher GA 

and the optimal values of the test problems described in Appendix A. 
Test problems      Solutions of 

max-Hamacher GA 
    Optimal values 

A.1 

A.2 

A.3 

A.4 

A.5 
A.6 

A.7 

A.8 

34.163868 

         -0.409082 

-1.089752 

6.154911 

62.599047 
-0.235645 

-0.920109 

99.210352 

34.163868 

-0.409086 

-1.089756 

6.154906 

62.599047 
-0.235648 

-0.92010999.210352 
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Figure 1. The performance of the max-Hamacher GA                  Figure 2. The performance of the max-

Hamacher 

on test problem A.1.                                                              GA  on test problem A.2. 

 

 
Figure 3. The performance of the max-Hamacher GA                  Figure 4. The performance of the max-

Hamacher 

on test problem A.3.                                                                 GA on test problem A.4. 

 

 
Figure 5. The performance of the max-Hamacher GA                  Figure 6. The performance of the max-

Hamacher 

on test problem A.5.                                                                               GA on test problem A.6. 
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Figure 7. The performance of the max-Hamacher GA                  Figure 8. The performance of the max-

Hamacher 

on test problem A.7.                                                                              GA on test problem A.8. 

 

5.2. Comparisons with other works 

As mentioned before, we can make a comparison between the current GA, max-min GA [42] and max-

product GA [29]. For this purpose, all the test problems described in Appendix B have been designed in such a 

way that they are feasible for both the minimum and product t-norms. 

The first comparison is against max-min GA, and we apply our algorithm (modified for the minimum t-norm) to 

the test problemsby considering   as the minimum t-norm.  The results are shown in Table 3 including the 

optimal objective values found by the current GA and max-min GA. As is shown in this table, the current GA 

finds better solutions for test problems 1, 5 and 6, and the same solutions for the other test problems.  

Table 4 shows that the current GA finds the optimal values faster than max-min GA and hence has a higher 

convergence rate, even for the same solutions. The only exception is test problem 8 in which all the results are 

the same.In all the cases, results marked with “*” indicate the better cases. 

The second comparison is against the max-productGA. In this case, we apply our algorithm (modified 

for the product t-norm) to the same test problems by considering   as the product t-norm (Tables 5 and 6).  

The results, in Tables 5 and 6, demonstrate that the current GA produces better solutions (or the same solutions 

with a higher convergence rate) when compared against max-productGAs for all the test problems.  

 

Table 3. Best results found by our algorithm and max-min GA. 
Test problems Lu and Fang Our algorithm 

B.1 8.4296755 8.4296754* 

B.2 -1.3888 -1.3888 

B.3 0 0 

B.4 5.0909 5.0909 

B.5 71.1011 71.0968* 

B.6 -0.3291 -0.4175* 

B.7 -0.6737 -0.6737 

B.8 93.9796 93.9796 

 

Table 4. A Comparison between the resultsfound by the current GA and max-min GA. 
Test 

problems 

 Max-min GA Our GA 

 

     B.1 

Average best-so-far 

Median best-so-far 

Average mean fitness 

          8.4297014 

          8.4296755 

          8.4308865 
 

8.4296796* 

          8.4296755 

          8.4298745* 

 

 

B.2 

Average best-so-far 

Median best-so-far 

Average mean fitness 
 

-1.3888 

-1.3888 

-1.3877 
 

-1.3888 

-1.3888 

-1.3886* 

 

 

B.3 

Average best-so-far 

Median best-so-far 
Average mean fitness 

 

                 0 

                 0 
          7.1462e-07 

 

                 0 

                 0 
                 0* 

 

 
B.4 

Average best-so-far 
Median best-so-far 

Average mean fitness 

5.0909 
5.0909 

5.0910 

5.0909 
5.0909 

5.0908* 
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B.5 

Average best-so-far 
Median best-so-far 

Average mean fitness 

 

71.1011 
71.1011 

71.1327 

 

71.0969* 

71.0968* 

71.1216* 

 

 
B.6 

Average best-so-far 
Median best-so-far 

Average mean fitness 

 

-0.3291 
-0.3291 

-0.3287 

 

-0.4175* 

-0.4175* 

-0.4162* 

 

 

B.7 

Average best-so-far 

Median best-so-far 

Average mean fitness 
 

-0.6737 

-0.6737 

-0.6736 
 

-0.6737 

-0.6737 

-0.6737* 

 

 

B.8 

Average best-so-far 

Median best-so-far 
Average mean fitness 

 

93.9796 

93.9796 
93.9796 

 

93.9796 

93.9796 
93.9796 

 

 

Table 5. Best results found by our algorithm and max-product GA. 
Test problems Hassanzadeh et al. Our algorithm 

B.1 13.61740269 13.61740246* 

B.2 -1.5557 -1.5557 

B.3 0 0 

B.4 5.8816 5.8816 

B.5 45.0650 45.0314* 

B.6 -0.3671 -0.4622* 

B.7 -2.470232 -2.470232 

B.8 38.0195 38.0150* 

 

Table 6. A Comparison between the results found by the current GA and max-product GA. 
Test 

problems 

      Max-product GA             Our GA 

 
B.1 

Average best-so-far 
Median best-so-far 

Average mean fitness 

13.61745044 
13.61740371 

13.61785924 

13.61740502* 

13.61740260* 

13.61781613* 

 

B.2 

Average best-so-far 

Median best-so-far 

Average mean fitness 

 

-1.5557 

-1.5557 

-1.5524 

-1.5557 

-1.5557 

-1.5557* 

 

 

B.3 

Average best-so-far 

Median best-so-far 

Average mean fitness 
 

0 

0 

1.5441e-05 

0 

0 

0* 

 

 

B.4 

Average best-so-far 

Median best-so-far 

Average mean fitness 
 

5.8816 

5.8816 

5.8823 

5.8816 

5.8816 

5.8816* 

 

 

B.5 

Average best-so-far 

Median best-so-far 
Average mean fitness 

 

45.0650 

45.0650 
45.1499 

45.0315* 

45.0314* 

45.0460* 

 

 

B.6 

Average best-so-far 

Median best-so-far 
Average mean fitness 

 

-0.3671 

-0.3671 
-0.3668 

-0.4622* 

-0.4622* 

-0.4614* 

 
B.7 

Average best-so-far 
Median best-so-far 

Average mean fitness 

 

-2.470232 
-2.470232 

-2.470175 

-2.470232 

-2.470232 

-2.470213* 

 

 
B.8 

Average best-so-far 
Median best-so-far 

Average mean fitness 
 

38.0195 
38.0195 

38.0292 

38.0150* 

38.0150* 

38.0171* 

 

 

V. CONCLUSION 

In this paper, we investigated the resolution of FRE defined byHamacherfamily of t-norms and 

presented two necessary and sufficient conditions to determine the feasibility of the problem. Also, two 

simplification approaches (depending on the Hamacher t-norm) were proposed to simplify the problem. A 

nonlinear optimization problem was introduced in which the constraints were defined by the max-Hamacher 

fuzzy relational equations.A genetic algorithm was designed for solving the nonlinear optimization problems 
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constrained by the max-Hamacher FRE. Moreover, we presented a method for generating feasible max-

Hamacher FREs as test problems for the performance evaluation of the proposed algorithm. Experiments were 

performed with the proposed method in the generated feasible test problems. We conclude that the proposed GA 

can find the optimal solutions for all the cases with a great convergence rate. Moreover, a comparison was made 

between the proposed method and max-min and max-productGAs, which solve the nonlinear optimization 

problems subjected to the FREs defined by max-min and max-product compositions, respectively. The results 

showed that the proposed method (modified by minimum and product t-norms) finds better solutions compared 

with the solutions obtained by the other algorithms.   

As future works, we aim at testing our algorithm in other type of nonlinear optimization problems 

whose constraints are defined as FRE or FRI with other well-known t-norms. 
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Appendix A 

 

Test Problem A.1: 
2 2 4 4

1 2 3 4 2 3 1 4( ) ( 10 ) 5( ) ( 2 ) 10( )f x x x x x x x x x         

[0.7508 , 0.8667 , 0.1737]Tb   

0.5466    0.4447    0.8618    0.9913

0.5714    1.0000    0.9840    0.9461

0.0739    0.4114    0.0604    0.1245

A

 
 


 
  

 

 

Test Problem A.2: 

1 2 3 1 3 1 4 2 3 2 4 4 5( )f x x x x x x x x x x x x x x        , 

[0.3802 , 0.3713 , 0.9578 , 0.8987]Tb   

0.0134    0.4195    0.4414    0.2261    0.8640

0.0595    0.8265    0.2358    0.2603    0.1849

0.9716    0.1958    0.9005    0.1110    0.4638

0.5184    0.6134    0.3578    0.9919    0.4770

A

 
 
 
 
 
 

 

 

Test Problem A.3: 

1 2 3 4 5 6( ) (1 )f x x x Ln x x x x    , 

[0.9064 , 0.4253 , 0.5050 , 0.6276]Tb   

0.8257    0.7529    0.3805    0.4350    0.9634    0.4950

0.1376    0.8935    0.8517    0.9040    0.2221    0.1918

0.2914    0.6959    0.3200    0.2601    0.0035    0.6116

0.6592    0.5076    1.0009    

A 

0.3047    0.4999    0.4024

 
 
 
 
 
 

 

 

Test Problem A.4: 

1 4 6

1 2 5( ) 2 4
x x x

f x x x x e


    , 
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[0.5849 , 0.4684 , 0.7908 , 0.3129 , 0.5777]Tb   

0.7531    0.6243    0.7585    0.8581    0.2904    0.6837

0.6443    0.1379    0.2702    0.8437    0.1479    0.3227

0.2535    0.8900    0.9201    0.3996    0.0430    0.2833

0.0669    0.2101    0.5484    

A 

0.2301    0.3199    0.0522

0.0563    0.2885    0.2611    0.8847    0.5889    0.3613

 
 
 
 
 
 
  

 

 

Test Problem A.5: 

6
2 2 2

1

1

( ) [100( ) (1 ) ]k k k

k

f x x x x



    , 

[0.2922 , 0.2526 , 0.3279 , 0.3855 , 0.8394]Tb   

0.4277    0.6059    0.1413    0.8197    0.3142    0.3271    0.1420

0.5121    0.2795    0.2053    0.3248    0.0851    0.2704    0.0956

0.1440    0.6632    0.9550    0.0402    0.3120    0.3677    0.0605A 

0.6556    0.7501    0.7828    0.1850    0.3841    0.3035    0.3935

0.7603    0.5252    1.1517    0.1699    0.1812    0.9584    0.3891

 
 
 
 
 
 
  

 

 

Test Problem A.6: 

1 4 2 3 2 6 5 6 5 4 6 7( ) 0.5( )f x x x x x x x x x x x x x       , 

[0.0387 , 0.0871 , 0.9195 , 0.4672 , 0.8911 , 0.5548]Tb   

0.0315    0.5460    0.6902    0.0179    0.1816    0.0356    0.0448

0.0079    0.8519    0.9319    0.0623    0.6220    0.1528    0.0114

0.9640    0.4568    0.2598    0.8875    1.1125    0.8720    0.1482
A 

0.0063    0.1351    0.8162    0.2068    0.4893    0.7443    0.4999

0.0988    0.2774    1.2560    0.9306    1.4748    1.2097    0.7000

0.0414    0.4326    1.6203    0.5406    0.7725    0.5426    0.7002






 
 
 
 
 
 
 



 

 

Test Problem A.7: 

1 2 3 4 5 3 3 3 2

1 2 6 7 8( ) 0.5( 1) 2
x x x x x

f x e x x x x x      , 

[0.1005 , 0.3808 , 0.1660 , 0.5817 , 0.9093 , 0.7985]Tb   
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0.0310    0.6969    0.0185    0.0630    0.0919    0.0713    0.2496    0.4829

0.1073    0.6347    0.4281    0.2422    0.2589    0.6388    0.8061    0.5405

0.1249    0.2469    0.1687    0.1691    0.0796
A 

    0.9319    0.5389    0.4660

0.5950    0.3615    0.0740    0.5130    0.0819    0.4549    0.6721    0.9109

0.2556    1.4367    0.8898    0.9471    0.0732    0.5659    0.3055    0.5060

0.7614    1.1470    0.0670    0.5107    0.9179    0.2755    1.0347    0.8852

 
 
 
 
 
 
 
 
 

 

 

Test Problem A.8: 

7
2 2 2 2

1 7 1

1

( ) ( 1) ( 1) 10 (10 )( )k k

k

f x x x k x x 



      

[0.4237 , 0.3386 , 0.1688 , 0.6216 , 0.2097 , 0.2375 , 0.0649]Tb   

0.2049    0.0773    0.2904    0.1781    0.2710    0.0364    0.6074    0.0767

0.2003    0.0072    0.0841    0.8016    0.4733    0.2531    0.2409    1.5668

0.0432    0.2902    0.0834    0.3294    0.3147

A 

    0.6609    0.1286    1.1558

0.6979    0.1751    0.3239    0.9019    0.0791    0.7741    0.6155    0.2101

0.0182    0.5373    0.0800    0.2726    0.1790    0.0183    0.1294    0.6273

0.1778    0.0600    0.2494    0.0040    0.2977    0.5861    0.2469    0.6972

0.0514    0.1384    0.0167    0.0765    0.0814    0.2829    0.0922    0.9899

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Appendix B 

 

Test Problem B.1: 
2 2 4 4

1 2 3 4 2 3 1 4( ) ( 10 ) 5( ) ( 2 ) 10( )f x x x x x x x x x         

[0.2077 , 0.4709 , 0.8443]Tb   

0.4302    0.4464    0.0741    0.0751

0.1848    0.1603    0.4628    0.5929

0.9049    0.1707    0.8746    0.4210

A

 
 


 
  

 

 

Test Problem B.2: 

1 2 3 1 3 1 4 2 3 2 4( )f x x x x x x x x x x x x       , 

[0.4228 , 0.9427 , 0.9831]Tb   

0.1280    0.7390    0.2852    0.2409

0.9991    0.7011    0.1688    0.9667

0.1711    0.6663    0.9882    0.6981

A
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Test Problem B.3: 

1 2 3 4 5( )f x x x x x x , 

[0.6714 , 0.5201 , 0.1500]Tb   

0.4424    0.3592    0.6834    0.6329    0.9150

0.6878    0.7363    0.7040    0.6869    0.2002

0.6482    0.3947    0.4423    0.0769    0.0175

A

 
 


 
  

 

 

Test Problem B.4: 

1 4

1 2 5( ) 2 4
x x

f x x x x e    , 

[0.6855 , 0.5306 , 0.5975 , 0.2992]Tb   

0.1025    0.7780    0.3175    0.9357    0.7425

0.0163    0.2634    0.5542    0.4579    0.9213

0.7325    0.2481    0.8753    0.2405    0.4193

0.1260    0.2187    0.6164    0.7639    0.2962

A

 
 
 
 
 
 

 

 

Test Problem B.5: 

6
2 2 2

1

1

( ) [100( ) (1 ) ]k k k

k

f x x x x



    , 

[0.5846 , 0.8277 , 0.4425 , 0.8266]Tb   

0.1187    0.4147    0.8051    0.3876    0.3643    0.7031

0.4761    0.8606    0.4514    0.0311    0.5323    0.1964

0.6618    0.2715    0.3826    0.0302    0.7117    0.1784

0.9081    0.1459    0.7896    

A 

0.9440    0.8715    0.1265

 
 
 
 
 
 

 

 

Test Problem B.6: 

1 4 2 3 2 6 5 6 5 4 6 7( ) 0.5( )f x x x x x x x x x x x x x       , 

[0.9879 , 0.6321 , 0.8082 , 0.6650]Tb   

0.0832    0.3312    0.4580    0.7001    0.8287    0.9978    0.1876

0.3904    0.4277    0.2302    0.1373    0.4850    0.3495    0.8831

0.2393    0.8619    0.2734    0.8265    0.6598    0.4328    0.9315
A 

0.4863    0.3787    0.6748    0.9301    0.4564    0.5893    0.8943

 
 
 
 
 
 

 

 

Test Problem B.7: 

1 2 3 4 5 3 3 3 2

1 2 6( ) 0.5( 1)
x x x x x

f x e x x x     , 

[0.9521 , 0.0309 , 0.8627 , 0.8343 , 0.6290]Tb   
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0.9869    0.0805    0.8373    0.1417    0.9988    0.6320

0.0139    0.0169    0.0182    0.4379    0.0295    0.5095

0.2497    0.6914    0.8961    0.3504    0.8225    0.2433

0.9691    0.6170    0.5921    

A 

0.4785    0.5994    0.5714

0.6197    0.6298    0.2372    0.5874    0.2560    0.9817

 
 
 
 
 
 
  

 

 

Test Problem B.8: 

6
2 2 2 2

1 7 1

1

( ) ( 1) ( 1) 10 (10 )( )k k

k

f x x x k x x 



      

[0.7840 , 0.4648 , 0.8864 , 0.8352 , 0.9839]Tb   

 0.8522    0.2376    0.3586    0.7260    0.8891    0.2771    0.1316

 0.4673    0.8176    0.1173    0.5350    0.1426    0.0020    0.2892

 0.9707    0.4058    0.7248    0.1826    0.6193    0.8108    0.9A  630

 0.8412    0.4663    0.7011    0.1124    0.6848    0.9434    0.4656

 0.0785    0.9515    0.9997    0.0028    0.4982    0.6384    0.3852
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