On Intuitionistic Fuzzy IIgb-D Sets And Some Of Its Applications

¹Amal M. Al-Dowais, 2 AbdulGawad A. Q. Al-Qubati.

Department Of Mathematics, College of Science and Arts, Najran University, KSA Department Of Mathematics, College of Science and Arts, Najran University, KSA (On leave from Hodiedah University, Yemen) Corresponding Author: Amal M. Al-Dowais

ABSTRACT: In this paper we introduce and study new classes of separation axioms with compactness and connectedness by using intuitionistic fuzzy π gb-sets and intuitionistic fuzzy π gb-D-sets. **KEY WARDS:** IF π gb-D-sets, IF π gb-Di-spaces for i = 0, 1, 2, IF π gb-D-compact and IF π gb-D-connected.

Date of Submission:13-11-2018

Date of acceptance: 27-11-2018

I. INTRODUCTION

The concept of fuzzy set was introduced by L. A. Zadah [13]. The fuzzy concept has invaded almost all branches of mathematics. The concept of fuzzy topological space was introduced and develped by C. L. Chang [4]. Atanasov [3] was introduced The concept of intuitionistic fuzzy set, as a generalization of fuzzy set. This approach provided a wide field to the generalization of various concepts of fuzzy mathematics. In 1997 Coker[7] defined intuitionistic fuzzy topological spaces. Recently many concepts of fuzzy topological space have been extended in intuitionistic fuzzy (IF) topological spaces. D. Sreeja and C. Janaki [11] intrduced the concept of π gb-D-sets and Some Low Separation Axioms. Amal M. Al-Dowais and AbdulGawad A. Al-Qubati [2] studied the concept of slightly π gb-continuous functions in intuitionistic fuzzy topological spaces. In this paper we introduce and study the concepts of intuitionistic fuzzy π gb-D-sets. We also introduced intuitionistic fuzzy π gb-D_i-spaces for i = 0,1,2, compactness, connectedness and discussed their properties.

II. PRELIMINARIES

Definition 2.1 [3] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ < x, \mu_A(x), \nu_A(x) > : x \in X \}$, where the function $\mu_A(x) : X \to [0,1]$ and $\nu_A(x) : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

 $\begin{array}{l} \text{Definition 2.2 [3] Let A and B be IFSs of the form A = {< x, \mu_A(x), \nu_A(x) > : x \in X} and B = {< x, \mu_B(x), \nu_B(x) >: x \in X}. Then : \\ (a) A \subseteq B if and only if \mu_A(x) \leq \mu_B(x) and \nu_A(x) \geq \nu_B(x) for all x \in X. \\ (b) A = B if and only if A \subseteq B and B \subseteq A. \\ (c) A^c = {< x, \nu_A(x), \mu_A(x) > : x \in X}. \\ (d) A \cap B = {< x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) > : x \in X}. \\ (e) A \cup B = {< x, \mu_A(x) \land \mu_B(x), \nu_A(x) \land \nu_B(x) > : x \in X}. \\ (f) A - B = {< x, \min(\mu_A(x), \nu_B(x)), \max(\nu_A(x), \mu_B(x)) > : x \in X}. \\ (g) 0_{\sim} = {< x, 0, 1 > : x \in X} and 1_{\sim} = {< x, 1, 0 > : x \in X}. \\ (h) 0^c \sim = 1_{\sim} and 1^c \sim = 0_{\sim}. \end{array}$

Definition 2.3 [5] Let α , $\beta \in [0,1]$ such that $\alpha + \beta \leq 1$. An intuitionistic fuzzy point (IFP) $p_{(\alpha,\beta)}$ is intuitionistic fuzzy set defined by

$$p_{(\alpha,\beta)} = \begin{cases} (\alpha,\beta) & if \quad x = p \\ \\ (0,1) & if \quad otherwise \end{cases}$$

In this case, p is called the support of $p_{(\alpha,\beta)}$ and α , β are called the value and no value of $p_{(\alpha,\beta)}$ respectively.

Clearly an intuitionistic fuzzy point can be represented by an ordered pair of fuzzy point as follows: $p_{(\alpha,\beta)} = (p_{\alpha}, p_{(1-\beta)})$

In IFPp(α,β) is said to belong to an IFS A = {< x, $\mu_A(x), \nu_A(x) >: x \in X$ } denoted by $p_{(\alpha,\beta)} \in A$, if $\alpha \le \mu_A(x)$ and $\beta \ge \nu_A(x)$.

Definition 2.4 [3] Let X and Y be two nonempty sets and $f: X \to Y$ be a function. Then:

(a) If $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle : y \in Y\}$ is an IFS in Y, then the preimage of B under f denoted by $f^{-1}(B)$ is the IFS in X defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) \rangle : x \in X\}.$

(b) If $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ is an IFS in X, then the image of A under f denoted by f(A) is the IFS in Y defined by $f(A) = \{ \langle y, f(\mu_A)(y), 1-f(1-\nu_A)(y) \rangle : y \in Y \}$ where,.

$$f(\mu_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu_A(x) & \text{if } f^{-1}(y) \neq 0_{\sim} \\ 0 & \text{if } otherwise \end{cases}$$

$$1 - f(1 - v_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} v_A(x) & \text{if } f^{-1}(y) \neq 0 \\ 1 & \text{if } otherwise \end{cases}$$

Definition 2.5 [6] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms :

(i) 0_{\sim} , $1_{\sim} \in \tau$

(ii) $G_1 \cap G_2$ for any G_1 , G_2 in τ .

(iii) $\bigcup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFT in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. the complement A^c of an IFOS A in an IFTS (X,τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.6 [7] A subset A of an intuitionistic fuzzy space X is said to be clopen if it is intuitionistic fuzzy open set and intuitionistic fuzzy closed set.

Definition 2.7 [4] Let (X,τ) be an IFTS and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy clouser are defined by :

$$int(A) = \bigcup \{G : G \text{ is an IFOS in } X \text{ and } G \subseteq A\}$$
$$cl(A) = \bigcap \{K : K \text{ is an IFCS in } X \text{ and } A \subseteq K\}$$

Definition 2.8 An IFS A of an IFTS (X,τ) is an :

1. Intuitionistic fuzzy regular open set (IFROS in short) if int(cl(A)) = A. [7]

2. Intuitionistic fuzzy regular closed set (IFRCS in short) if cl(intl(A)) = A. [7]

3. Intuitionistic fuzzy π -open set (IF π OS in short) if the finite union of intuitionistic fuzzy regular open sets. [10] 4. Intuitionistic fuzzy π -closed set (IF π CS in short) if the finite intersection of intuitionistic fuzzy regular closed sets. [10] 5. Intuitionistic fuzzy generalized open set (IFGOS in short) if $F \subseteq int(A)$ whenever $F \subseteq A$ and F is an IFCS in X. [12]

6. Intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X. [12]

7. Intuitionistic fuzzy b-open set (IFbOS in short) if $A \subseteq cl(int(A)) \cup int(cl(A))$. [1]

8. Intuitionistic fuzzy b-closed set (IFbCS in short) if $cl(int(A)) \cup int(cl(A)) \subseteq A$. [1]

9. Intuitionistic fuzzy semi-open set (IFSOS in short) if $A \subseteq cl(int(A))$. [7]

10. Intuitionistic fuzzy semi-closed set (IFSCS in short) if $int(cl(A)) \subseteq A$. [7]

11. Intuitionistic fuzzy α -open set (IF α OS in short) if A \subseteq int(cl(int(A))). [7]

12. Intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A. [7]

13. Intuitionistic fuzzy pre-open set (IFPOS in short) if $A \subseteq int(cl(A))$. [7]

14. Intuitionistic fuzzy pre-closed set (IFPCS in short) if $cl(int(A)) \subseteq A$. [7]

Definition 2.9 [9] Let (X,τ) be an IFTS and A be an IFS in X. Then the intuitionistic fuzzy b-interior and an intuitionistic fuzzy b-clousre are defined by :

bint(A) = $\bigcup \{G : G \text{ is an IFbOS in X and } G \subseteq A\}$ bcl(A) = $\bigcap \{K : K \text{ is an IFbCS in X and } A \subseteq K\}$

Theorem 2.10 Let A be an intuitionistic fuzzy set of an IFTS (X,τ) , then :

(i) $bcl(A) = A \bigcup [int(cl(A)) \bigcap cl(int(A))]$

(ii) $bint(A) = A \bigcap [int(cl(A)) \bigcup cl(int(A))]$

Definition 2.11 [2] An IFS A of an IFTS (X,τ) is an :

1. Intuitionistic fuzzy π gb-open set (IF π gbOS in short) if $F \subseteq bint(A)$ whenever $F \subseteq A$ and F is an IF π CS in X. 2. Intuitionistic fuzzy π gb-closed set (IF π gbCS in short) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF π OS in

2. Intuitionistic fuzzy π gb-closed set (IF π gbCS in short) if bcl(A) \subseteq U whenever A \subseteq U and U is an IF π OS in X.

Definition 2.12 [2] Let f be a function from an IFTS (X,τ) into an IFTS (Y,σ) . Then f is said to be an intuitionistic fuzzy π gb-continuous if f⁻¹(F) is an intuitionistic fuzzy π gb-closed in (X,τ) for every intuitionistic fuzzy closed set F of (Y,σ) .

Definition 2.13 [2] Let f be a function from an IFTS (X,τ) into an IFTS (Y,σ) . Then f is said to be an intuitionistic fuzzy π gb-irresolute if $f^{-1}(F)$ is an intuitionistic fuzzy π gb-closed in X for every intuitionistic fuzzy π gb-closed set F of Y.

Definition 2.14 [2] An IFTS (X,τ) is called $(\pi gb - T_0)$ if and only if for each pair of distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}$, $y_{(v,\delta)}$ in X there exists an intuitionistic fuzzy πgb -open set U, \in X such that $x_{(\alpha,\beta)} \in U, y_{(v,\delta)} \notin U$.

Definition 2.15 [2] An IFTS (X,τ) is called $(\pi gb - T_1)$ if and only if for each pair of distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}$, $y_{(v,\delta)}$ in X there exists intuitionistic fuzzy πgb -open sets $U, V \in X$ such that $x_{(\alpha,\beta)} \in U, y_{(v,\delta)} \notin U$ and $y_{(v,\delta)} \in V, x_{(\alpha,\beta)} \notin V$.

Definition 2.16 [2] An IFTS (X,τ) is said to be $\pi gb-T_2$ or πgb -Hausdorff if for all pair of distinct intuitionistic fuzzy points $x(\alpha,\beta)$, $y(\nu,\delta)$ in X there exits IF πgb open sets $U, V \in X$ such that $x_{(\alpha,\beta)} \in U, y_{(\nu,\delta)} \in V$ and $U \cap V = 0_{\sim}$.

Main Results And Applications

Definition 3.1 An IFS A of an IFTS (X,τ) is an :

i) Intuitionistic fuzzy D-set if there exits IF open sets U,V in (X,τ) such that $U \neq 1_{\sim}$ and A = U - V.

ii) Intuitionistic fuzzy semi-D-set if there exits IF semi-open sets U,V in (X, τ) such that U $\neq 1_{\sim}$ and A = U - V.

iii) Intuitionistic fuzzy α -D-set if there exits IF α -open sets U,V in (X,τ) such that $U \neq 1_{\sim}$ and A = U - V.

iv) Intuitionistic fuzzy pre-D-set if there exits IF pre-open sets U,V in (X, τ) such that U \neq 1~ and A = U –V.

v) Intuitionistic fuzzy b-D-set if there exits IF b-open sets U,V in (X,τ) such that $U \neq 1_{\sim}$ and A = U - V.

Remark 3.2 Clearly every IFOS (respectively IFSO, IFaOS, IFPOS, IFbOS) U different from 1~ is an IFD-set

(respectively IFSD-set, IF α Dset, IFPD-set, IFb-set) if A = U and V = 0~.

The converse of the above remark is not true.

Example 3.3 Let X ={a,b}, A = {< a, 0.1, 0.9 >, < b, 0.8, 0.2 >}, B = {< a, 0.2, 0.8 >, < b, 0.9, 0.1 >}, and IFTS $\tau = \{0_{\sim}, 1_{\sim}, A, B\}$. Then, D = {< a, 0.1, 0.9 >, < b, 0.1, 0.9 >} is an (IF-D-set, IF α -D-set, IFS-D-set, IFP-Dset and IFb-D-set) but not an (IFOS, IF α OS, IFSOS, IFPOP and IFbOS).

Since U = {< a, 0.1, 0.9 >,< b, 0.8, 0.2 >} \neq 1~ and V = {< a, 0.2, 0.8 > ,< b, 0.9, 0.1 >} are (IFOSs, IF α OSs, IFSOSs, IFPOSs and IFbOSs) in (X, τ), U -V = U \cap V ^c = D.

Theorem 3.4 (i) Every IFD-set is an IF α D-set , IFSD-set , IFPD-set and IFbD-set . (ii) Every IF α D-set is an IFSD-set , IFPD-set and IFbD-set . (iii) Every IFSD-set and IFPD-set is an IFbD-set.

Proof. Obvious.

Definition 3.5 An IFS A of an IFTS (X,τ) is called IF π gb-D-set if there exits IF π gb open sets U,V in (X,τ) such that $U \neq 1_{\sim}$ and A = U - V.

Remark 3.6 Every IF π gb-open set U different from 1_{\sim} is an IF π gb-D-set if A = U and V = 0_{\sim} .

Example 3.7 Let X ={a,b,c}, and A = {< a, 1, 0 >, < b, 0, 1 >, < c, 0, 1 > }, B = {< a, 0, 1 >, < b, 0.8, 0.2 >, < c, 0.3, 0.7 >}, C = {< a, 1, 0 >, < b, 0.8, 0.2 >, < c, 0.3, 0.7 >}, and is IFTS $\tau = \{0 \sim, 1 \sim, A, B, C\}$. Then D = {< a, 0, 1 >, < b, 0.2, 0.8 >, < c, 0.7, 0.3 >} is an IF π gb-D-set but not IF π gb-open set. Since U = {< a, 1, 0 >, < b, 0.4, 0.6 >, < c, 0.7, 0.3 >} $\neq 1_{\sim}$ and V = {< a, 1, 0 >, < b, 0.8, 0.2 >, < c, 0.1, 0.9 >} are IF π gb-open sets in (X, τ), U-V = U \cap V^c = D, then D is an IF π gb-D-set but not IF π gb-open set. Since C^c (π -closed set) \subseteq D and C^c \subseteq bint(D) = 0_{\sim}.

Theorem 3.8 Every IFD-set, IFαD-set, IFPD-set, IFSD-set, IFbD-set is an IFπgb-D-set.

Proof. Since every IFOS, IF α OS, IFFOS, IFSOS and IFbOS is an IF π gbOS. Then the proof is directly clear.

The converse of the above theorem is not true.

Example 3.9 Let X ={a,b,c}, and A = {< a, 1, 0 >, < b,0,1 >, < c,0,1 >}, B = {< a,1,0 >, < b, 1, 0 >, < c, 0, 1 >}, then $\tau = \{0_{\sim}, 1_{\sim}, A, B\}$. Then D = {< a, 0, 1 >, < b, 1, 0 >, < c, 1, 0 >} is an IF π gb-D-set but not IFD-set, IF α D-set and IFSD-set.

Definition 3.10 X is said to be an :

- 1. IF π gb- D₀ if and only if for each pair of distinct intuitionistic fuzzy points, $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ in X there exists an intuitionistic fuzzy π gb-D-set U \in X such that $x_{(\alpha,\beta)} \in U$, $y_{(\nu,\delta)} \notin U$.
- 2. IF π gb-D₁ if and only if for each pair of distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}$, $y_{(v,\delta)}$ in X there exists intuitionistic fuzzy π gb-D-sets U,V \in X such that $x_{(\alpha,\beta)} \in$ U, $y_{(v,\delta)} \notin$ U and, $y_{(v,\delta)} \in$ V, $x_{(\alpha,\beta)} \notin$ V.
- 3. IF π gb-D₂(IF π gb-D-Hausdorf) if for all pair of distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ in X there exits IF π gb-D-sets U,V \in X such that $x_{(\alpha,\beta)} \in$ U, $y_{(\nu,\delta)} \in$ V and U \cap V = 0 \sim .

Theorem 3.11 1. If (X,τ) is IF π gb-T_i, then (X,τ) is IF π gb-D_i; i = 0,1,2. 2. If (X,τ) is IF π gb-D_i, then (X,τ) is IF π gb-D_{i-1}; i = 1,2. 3. If (X,τ) is IF π gb-T_i, then (X,τ) is IF π gb-T_{i-1}; i = 1,2.

Theorem 3.12 For an intuitionistic fuzzy topological space (X,τ) . the following statements hold: 1. (X,τ) is IF π gb-D₀ if and only if it is IF π gb-T₀.

2. (X, τ) is IF π gb-D₁ if and only if it is IF π gb-D₂.

Proof. (i) \Rightarrow Let (X,τ) be IF π gb-D₀. Then for any two distinct IF points $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ in X, let $x_{(\alpha,\beta)}$ belongs to IF π gbD-set G where $y(\nu,\delta) \notin$ G. Let $G = U_1 - U_2$ where $U_1 \neq 1_{\sim}$ and U_1, U_2 are IF π gbOSs in X. Then $x_{(\alpha,\beta)} \in U_1$ for $y_{(\nu,\delta)} \notin$ G we have two cases : (a) $y_{(\nu,\delta)} \notin U_1$ (b) $y_{(\nu,\delta)} \in U_2$ and $y_{(\nu,\delta)} \in U_2$. In case (a), $x_{(\alpha,\beta)} \in U_1$ but $y_{(\nu,\delta)} \notin U_1$; in case (b) $y_{(\nu,\delta)} \in U_2$ and $x_{(\alpha,\beta)} \notin U_2$. Hence (X,τ) is IF π gb-T₀.

 \Leftarrow By theorem (3.11) (1)

(ii) \Rightarrow Suppose (X,τ) is an IF π gb-D₁, then for each distinct IFP's pair $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ in (X,τ) , we have IF π gbD-sets G_1 and G_2 such that $x_{(\alpha,\beta)} \in G_1$ and $y_{(\nu,\delta)} \notin G_1$, $x_{(\alpha,\beta)} \notin G_2$ and $y_{(\nu,\delta)} \in G_2$. Let $G_1 = U_1 - U_2$ and $G_2 = U_3 - U_4$. By $x_{(\alpha,\beta)} \notin G_2$, it follows that either $x_{(\alpha,\beta)} \notin U_3$ or $x_{(\alpha,\beta)} \in U_3$ and $x_{(\alpha,\beta)} \in U_4$.

Now we have two cases : (i) $x_{(\alpha,\beta)} \notin U_3$. By $y_{(v,\delta)} \notin G_1$ we have two subcases : (a) $y_{(v,\delta)} \notin U_1$; By $x_{(\alpha,\beta)} \in U_1 - U_2$, it follows that $x_{(\alpha,\beta)} \in U_1 - (U_2 \cup U_3)$ and by $y_{(v,\delta)} \in U_3 - U_4$, we have $y_{(v,\delta)} \in U_3 - (U_1 \cup U_4)$. Hence $(U_1 - (U_3 \cup U_2)) \cap (U_3 - (U_1 \cup U_4)) = 0_{\sim}$. (b) $y_{(v,\delta)} \in U_1$ and $y_{(v,\delta)} \in U_2$, we have $x_{(\alpha,\beta)} \in U_1 - U_2$, $y_{(v,\delta)} \in U_2 \Rightarrow (U_1 - U_2) \cap U_2 = 0_{\sim}$. (ii) $x_{(\alpha,\beta)} \in U_3$ and $x_{(\alpha,\beta)} \in U_4$. We have $y(v,\delta) \in U_3 - U_4$, $x_{(\alpha,\beta)} \in U_4 \Rightarrow (U_3 - U_4) \cap U_4 = 0_{\sim}$. Thus (X,τ) is IF π gb-D₂. \leftarrow By theorem (3.11) (2)

Theorem 3.13 If (X,τ) is IF π gb-D₁, then it is IF π gb-T₀.

Proof. By theorem (3.11) and theorem (3.12).

Theorem 3.14 Let $f: (X,\tau) \to (Y,\sigma)$ be an IF π gb-continuous surjective function and S is an IFD-set of (Y,σ) , then the inverse image of G is an IF π gb-D-set of (X,τ) .

Proof. Let U_1 and U_2 be two IF open sets of (Y,σ) . Let $G = U_1 - U_2$ be an IFD-set and $U_1 \neq 1_{\sim}$. We have f $^{-1}(U_1)$, $f^{-1}(U_2) \in IF\pi$ gbOSs in (X,τ) and $f^{-1}(U_1) \neq 1_{\sim}$. Hence $f^{-1}(G) = f^{-1}(U_1 - U_2) = f^{-1}(U_1) - f^{-1}(U_2)$. Hence f $^{-1}(G)$ is an IF π gb-D-set.

Theorem 3.15 Let $f: (X,\tau) \to (Y,\sigma)$ be an IF π gb-irresolute surjection function and E is an IF π gb-D-set of (Y,σ) , then the inverse image of E is an IF π gb-D-set of (X,τ) .

Proof. Let E be an IF π gb-D-set in (Y, σ). Then there are an IF π gb-open sets U₁ and U₂ in Y such that E = U₁ –U₂ and U₁ $\neq 1_{\sim Y}$. Since f is IF π gb irresolute, f⁻¹(U₁) and f⁻¹(U₂) IF π gb-open sets in X. Since U₁ $\neq 1_{\sim Y}$, we have f⁻¹(U₁) $\neq 1_{\sim X}$. Hence f⁻¹(E) = f⁻¹(U₁ - U₂) = f⁻¹(U₁) - f⁻¹(U₂) is an IF π gb-D-set in (X, τ).

Theorem 3.16 Let $f: (X,\tau) \to (Y,\sigma)$ be an IF π gb-continuous bijective function and (Y,σ) is an IFD₁-space, then (X,τ) is an IF π gb-D₁-space.

Proof. Suppose (Y,σ) is an IFD₁-space. Let $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ be any distinct IFPs in X. Sence f is injective and (Y,σ) is an IFD₁-space, then there exists IFD-sets S_1 and S_2 of (Y,σ) containing $f(x_{(\alpha,\beta)})$ and $f(y_{(\nu,\delta)})$ respectively that $f(x_{(\alpha,\beta)}) \notin S_2$ and $f(y_{(\nu,\delta)}) \notin S_1$. By theorem(3.14) $f^{-1}(S_1)$ and $f^{-1}(S_2)$ are IF π gb-D-sets in X containing $x_{(\alpha,\beta)}$ and $y_{(\nu,\delta)}$ respectively such that $x_{(\alpha,\beta)} \notin f^{-1}(S_2)$ and $y_{(\nu,\delta)} \notin f^{-1}(S_1)$. Hence (X,τ) is an IF π gb-D₁-space.

Theorem 3.17 Let (Y,σ) be an IF π gb-D₁ and $f: (X,\tau) \to (Y,\sigma)$ is IF π gb irresolute bijective function, then (X,τ) is an IF π gb-D₁-space.

Proof. Suppose (Y,σ) is $IF\pi gb-D_1$ -space and f is is $IF\pi gb$ -irresolute bijective function. Let $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ be any distinct IFPs in (X,τ) . Sence f is injective and Y is an IFD_1 -space, then there exists IFD-sets S_1 and S_2 of Y containing $f(x_{(\alpha,\beta)})$ and $f(y_{(\nu,\delta)})$ respectively that $f(x_{(\alpha,\beta)}) \notin S_2$ and $f(y_{(\nu,\delta)}) \notin S_1$. By theorem(3.15) $f^{-1}(S_1)$ and $f^{-1}(S_2)$ are $IF\pi gb$ -D-sets in X containing $x_{(\alpha,\beta)}$ and $y_{(\nu,\delta)}$ respectively such that $x_{(\alpha,\beta)} \notin f^{-1}(S_2)$ and $y_{(\nu,\delta)} \notin f^{-1}(S_1)$. Hence (X,τ) is an $IF\pi gb$ - D_1 -space.

Theorem 3.18 A topological space (X,τ) is IF π gb-D₁-space if for each pair of distinct IFPs $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ in (X,τ) , there exists an IF π gb-continuous surjective function $f : (X,\tau) \to (Y,\sigma)$ where (Y,σ) is an IFD₁ space such that $f(x_{(\alpha,\beta)})$ and $f(y_{(\nu,\delta)})$ are distinct.

Proof. Let $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)}$ be any distinct IFPs in (X,τ) and f is an IF π gb-continuous surjection function of an IFS (X,τ) onto an IFD₁ space (Y,σ) such that $f(x_{(\alpha,\beta)}) \neq f(y_{(\nu,\delta)})$. Hence there exists disjoint IFD-sets U_1 and U_2 in (Y,σ) such that $f(x_{(\alpha,\beta)}) \in U_1$ and $f(y_{(\nu,\delta)}) \in U_2$. Since f is an IF π gb-continuous surjective function, by theorem (3.14) $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are disjoint IF π gb-D-sets in X containing $x_{(\alpha,\beta)}$ and $y_{(\nu,\delta)}$ respectively. Hence (X,τ) is an IF π gbD₁-space.

Theorem 3.19 (X,τ) is IF π gb-D₁-space if and only if for each pair of distinct IFPs $x_{(\alpha,\beta)}$, $y_{(\nu,\delta)} \in X$, there exists an IF π gb-irresolute surjective function $f: (X,\tau) \to (Y,\sigma)$, where (Y,σ) is an IF π gb-D₁ space such that $f(x_{(\alpha,\beta)})$ and $f(y_{(\nu,\delta)})$ are distinct.

Proof. Necessity. For every pair of distinct IFP's of (X,τ) , it suffices to take the identity function on (X,τ) . Sufficiency. Let $x_{(\alpha,\beta)}$, $y_{(v,\delta)}$ be any distinct IFP's in (X,τ) there exists an IF π gb-irresolute surjection function of an IFS (X,τ) onto an IF π gb-D₁ space (Y,σ) such that $f(x_{(\alpha,\beta)}) \neq f(y_{(v,\delta)})$. Hence there exists disjoint IF π gb-D-sets U₁ and U₂ in (Y,σ) such that $f(x_{(\alpha,\beta)}) \in U_1$ and $f(y_{(v,\delta)}) \in U_2$. Since f is an IF π gb-irresolute surjection function, by theorem (3.15) f⁻¹(U₁) and f⁻¹(U₂) are disjoint IF π gb-D-sets in (X,τ) containing $x_{(\alpha,\beta)}$ and $y_{(v,\delta)}$ respectively. Hence (X,τ) is an IF π gb-D₁-space.

Definition 3.20 An IFTS (X,τ) is said to be IF π gb-D-disconnected if there exists IF π gb-D-open set A, B in (X,τ) such that $A \neq 0_{\sim}$, $B \neq 0_{\sim}$, such that $A \cup B = 1_{\sim}$ and $A \cap B = 0_{\sim}$. If X is not IF π gb-D-disconnected then it is said to be IF π gb-D-connected.

Theorem 3.21 Let $f: (X,\tau) \to (Y,\sigma)$ be an IF π gb-D-continuous surjection, and (X,τ) is an IF π gb-D-connected, then (Y,σ) is an IFD-connected.

Proof. Assume that (Y,σ) is not IFD connected then there exists nonempty IFOS's A and B in (Y,σ) such that $A \bigcup B = 1_{\sim}$ and $A \cap B = 0_{\sim}$. Therefore, A and B are intuitionistic fuzzy open sets in Y. Since f is IF π gb-D-continuous $C = f^{-1}(A) \neq 0_{\sim}$, $D = f^{-1}(B) \neq 0_{\sim}$, which are IF π gb-D-open sets in X. And $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \bigcup B) = f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(0_{\sim}) = 0_{\sim}$ which implies $C \bigcup D = 1_{\sim}$, $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(0_{\sim}) = 0_{\sim}$ which implies $C \cap D = 0_{\sim}$. Thus X is IF π gb-D-disconnected, which is a contradiction to our hypothesis. Hence (Y,σ) is an IFD-connected.

Definition 3.22 Let (X,τ) be an IFTS. A family $\{< x, \mu_{Gi}(x), \nu_{Gi}(x) > : i \in J\}$ of an intuitionistic fuzzy π gb-Dsets in (X,τ) satisfies the condition $1_{\sim} = S\{< x, \mu_{Gi}(x), \nu_{Gi}(x) > ; i \in J\}$ is called an intuitionistic fuzzy π gb-D cover of (X,τ) . A finite subfamily of an intuitionistic fuzzy π gb-D cover $\{\langle x, \mu_{Gi}(x), \nu_{Gi}(x) \rangle : i \in J\}$ of (X,τ) which is also an intuitionistic fuzzy π gb-D cover of (X,τ) is called a finite subcover of $\{< x, \mu_{Gi}(x), \nu_{Gi}(x) >: i \in I\}$ J}.

Definition 3.23 An IFTS (X, τ) is called intuitionistic fuzzy π gb-D-compact if each intuitionistic fuzzy π gb-D-set cover of (X,τ) has a finite subcover of (X,τ) .

Theorem 3.24 Let $f: (X,\tau) \to (Y,\sigma)$ be an IF π gb-continuous surjection, (X,τ) is an intuitionistic fuzzy π gb-Dcompact space, then (Y,σ) is an intuitionistic fuzzy D-compact.

Proof. Let $f: (X,\tau) \to (Y,\sigma)$ be an IF π gb-continuous function from an intuitionistic fuzzy π gb-D-compact space (X,τ) onto an intuitionistic fuzzy topological space (Y,σ) . Let $\{A_i : i \in J\}$ be an intuitionistic fuzzy π gb-D cover of Y, then $\{f^{-1}(A_i) ; i \in J\}$ is an intuitionistic fuzzy π gb-D cover of X. Since X is intuitionistic fuzzy π gb-Dcompact it has finite intuitionistic fuzzy subcover say { $f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)$ }. Since f is onto, {A₁, A_2 , ..., A_n is an intuitionistic fuzzy cover of (Y,σ) , by intuitionistic fuzzy D cover has a finite subcover and so (Y,σ) is intuitionistic fuzzy D-compact.

REFERENCES

- D. Adnadjevic, "On b-Open Sets", Matematioki Vesink, 48 (1996), pp. 5964. [1].
- Amal M. Al-Dowais and AbdulGawad A. Al-Qubati, "ON Intuitionistic Fuzzy Slightly #gb-Continuous Functions", IARJSET, Vol. [2]. 4 (2017), Issue, 84 - 88.
- [3]. K. T. Atanassov, "Intuitionistic fuzzy sets", Fuzzy Sets and Systems, 20(1986), pp.87-96.
- C. L. Chang, "Fuzzy topological space", J. Math. Anal. Appl., 24 (1968), pp.182 -190. [4].
- D. Coker, M. Demirci, "On intuitionistic fuzzy points", Notes IFS, 1,2 (1995), pp. 79-84. [5].
- [6]. D. Coker and A. Es. Hyder, "An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems, 88(1997), pp. 81-89.
- [7]. H. Gurcay, A. Haydar and D. Coker, "On fuzzy continuity in intuitionisyic fuzzy topological spaces", jour. of fuzzy math, 5 (1997), pp.365-378.Al-Rashed, M., Al-Senafy, M., Viswanathan, M. and Al-Sumait, A., (1998). "Ground water Utilization in Kuwait: Some Problems and Solutions", Volume 14, Number 1, 1 March 1998, pp. 91-105(15).
- M. Hanafy, "Intuitionistic fuzzy γ continuity", Canad. Math Bull, 52(2009), pp. 1-11. [8].
- P. Rajarajeswari and R. Krishna Moorthy, "On intuitionistic fuzzy generalized b closed sets", International journal of Computer [9]. Applications, 63(2013), pp. 41-46.
- [10].
- M.S. Sarsak, N. Rajesh, "π-Generalized Semi Preclosed Sets ", Int. Mathematical Forum, 5 (2010), pp. 573-578. D. Sreeja and C. Janaki, "On πgb-D-sets and Some Low Separation Axioms", International Journal of Engineering Research and [11]. Applications, Vol. 2, Issue 5(2012), pp. 031-037.
- S. S. Thakur and Rekha Chaturvedi, "Regular generalized closed sets in intuitionistic fuzzy topological spaces", Universitatea Din [12]. Bacau Studii Si Cercertar Stiintifice, 6 (2006), pp. 257-272.
- L.A. Zadeh, "Fuzzy Sets", Inform. And control, 8 (1965), pp.338 353 [13].

Amal M. Al-Dowais "On Intuitionistic Fuzzy IIgb-D Sets And Some Of Its Applications "International Journal Of Modern Engineering Research (IJMER), vol. 08, no. 09, 2018, pp 74-80