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I. INTRODUCTION 
Nowadays, the third generation of high brilliance X-ray sources [1]iswidely used for different scientific 

applications, such as imaging, [2–4] astronomy, [5] medicine [6] and life science [7].With respect tothese 

applications, the use of reliable techniques in data handling, mining and processing has become a prerequisitefor 

asuccessful experiment. The fast developmentof the detector technology is one of the factors, which 

increasedconsiderably the volume of generated data. For example, the detectorscurrently used in the Large 

Hadron Collider (LHC) alone are recording 25 petabytes (25 million gigabytes) of data per year. Besides the 

LHC, the synchrotron radiation facilities around the world representanother source, generating a large volume of 

data in various scientific fields. In physics, X-ray crystallography (XRC) is a well-known toolfor determining 

the crystal structure, based on Bragg diffraction formed bynumerousatomic planes. One of XRCexperimental 

techniques to determine the crystal structure is the so-called Energy Dispersive Laue Diffraction (EDLD), which 

can be realized by using a white X-ray beam and a 2D energy-dispersive detector [8, 9]. 

The use offastreadout 2D detectors and polychromatic hard X-rays increases the amountof generated 

data, which may exceed tens of GByte/s [10]. Processing of large amounts of data on-the-fly is a challenging 

task, which requires multiple analyticalsteps (i.e. data streaming, data reconstruction, data mining and data 

interpretation) [11]. The conventional methodsof data treatment may lead to data loss and can be affected by 

complex aspectsofdata streaming, such as time efficiency, memory utilization and space occupancy [11]. Thus, 

many scientific researchers have adopted Deep Learning (DL) techniques tosolve the problems aboutimaging of 

straininnanocrystals [12]and classifying crystal structures as well as [13] Machine Learning (ML) techniques to 

resolve the issues about X-ray diffraction-based classification [14] and imaging of nanoscale lattice vibrations 

[15]. The idea behind the implementation of DL methods in data analysis is their enormouscomputational power 

to process massive datasets. [16] Furthermore, DL architectures have recently outperformed humans in visual 

tasks, namely object recognition and image classification [17].This paper presents a DL-based approach for data 

reconstruction ina Laue diffraction experiment with synchrotron radiation, using a white X-ray beam and an 

energy-dispersive 2D detector (pnCCD). This approach is able to classifythe patterns of single photons, 

hereinafter referred to as events, collected during EDLD experiments. The model aimed at performingthis task 

employs the Softmax [18] function at the classification layer. To predict a classification of patterns, a 

Convolutional Neural Network (CNN) [19] was built up. Thistypeof artificial neural networks, having multiple 

layers between an input and an output layers, is mostly applied to analyze visual images. To create thetraining 
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and validation datasets for the algorithm, more than 70000 events have been simulated and extracted under 

supervised classification. 

 

II. PNCCD CONCEPT 
The concept of pnCCD, as an energy-resolving area detector, is based on the principle of sideward 

depletion in high resistivity silicon. This basis allows for time resolution, simultaneous position measurement 

and energy dispersive detection of X-rays, with a low level of noise and a fast readout [20]. The system serves 

as a flexible large area detector in order both to resolve single photons in the spectroscopic operation mode and 

to count photons with a high dynamic range in the single photons counting mode. The pnCCD entrance window 

covers the area of 8.3 cm
2
 with 384 x 384 pixels, where each pixel has a size of 75 x 75 µm

2
. 

When the system is operating in the single photons counting mode, only few photons are recorded and 

not more than one photon is triggered by one pixel during each frame time interval. The number of the 

generated electrons in the charge cloud depends on the energy of the absorbed photon. The charge cloud 

expands due tothe drift and diffusion of electrons, passing through the siliconwindow towards the front end. The 

final size of the charge cloud, at the pixel plane, depends on the photon energy and the absorption depth within 

the depleted silicon substrate. The photon impact is localized at one pixel (single), two (doubles), three (triples) 

or four (quadruples) pixels, depending on the relative position and the size of the generated cloud [21]. Singles, 

left and right doubles, up and down doubles, four types of triples and four types of quadruples result in 13 

possible patterns, shown in figure 1. The patterns which cannot be described by one of these 13 types are 

obviously not created by a single-photon impact and are defined as fall-out events. Figure 2 shows examples of 

fall-out events recorded during an experiment.The dashed frames represent the borders of each event. Each 

event is a combination oftwo or more single-photon events shown in figure 1. Figures 2a and 2b display twofold 

events, while figures 2c and 2d show threefold combination. Fall-out events are denoted as“unknown events” 

and their contribution is neglected by conventional analytical tools. These events account for from15% to 40% 

of the total recorded events, depending on many factors, such as beam flux and frame-readout frequency. This 

impedes the determination of the actual number of photons detected during the experiment. As a result, the 

evaluated data set is incomplete and limits the outcome of subsequent data treatment, for example, for X-ray 

structure analysis [25]. Thus, many applications, demandingextremelyprecise calculations (i.e. structure factor 

analysis) are difficult to be performed due to involvement of multiple complex correction steps. Setting outto 

widen the range of pnCCDapplications, the issue of fall-out events has to be addressed. 

 

 
Figure 1: Thirteen possible event types originating from the interaction of single photon with pnCCD 

detector. 

 

 
(a)Triple-double (b)Quadruple-triple (c)Triple-double-quadruple (d)Twodoubles-

double 

Figure 2: Examples offall-out events. 

 

III. CLASSIFICATION AND RECONSTRUCTION OF EVENTS 
 Prior to further analysis of the EDLD experiment, the recorded raw event data illustratedin section 2 

have to be reconstructed. This process is composed of two main steps: 
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. Classification of event patterns: the events are categorized according tofive types (single-pixel events, three 

classes of multi-pixel events and unknown events), as shown in figure 1. 

. Reconstruction of events: the multi-pixel events are reconstructed to individual photon hits by determining the 

center-of-mass coordinates of each event. 

 Achieving real-time event reconstruction is a challenging task because of the huge volume of data 

collected during the experiment. A typical one-shot data set, taken by the single photon counting mode, contains 

5 x 10
4
 frames with ≈ 300 event/frame. However, the use of a traditional serial Application Programming 

Interface (API) induces high latency execution time and data loss [11]. Therefore, many studiesemployed the 

parallel processor technology and multi-core Graphic Processing Units (GPUs) in order to realize the in-situ 

reconstruction of events [11, 22, 23]. Although these approaches have proven to bea reliable technique inthe 

case of single-photon events reconstruction, they fail to offer a solution for fall-out events. The present paper 

introduces a state of art DL-based application to achieve a precise classification of patterns for single photon 

events. Furthermore, this approach serves as a seed for reconstruction of fall-out events. 

 The following sections are organized as follows: Section 4 describes theprocess of data preparation and 

outlines the training, validation and testing phases. Section 5 provides a summary of the network architecture 

used for this model. Section 6 illustrates the results of the analysis. Finally, section 7 provides the conclusion 

and addresses some open problems for further investigation. 

 

IV. TRAINING, VALIDATION AND TESTING PHASES 
 In order to assure the quality of the training procedure, two datasets were used in combination: namely 

the simulated and experimental samples. The simulated dataset was generated based on constraints and 

conditions defined by a typical EDLD experiment, including all permutations of the events. Since the detector 

size is 384 x 384 pixels, a single frame image is, in fact, a sparse matrix with only few events. To avoid large 

sparsity, 9 x 9 pixel window was used to cut out single, double, triple or quadruple events, as shown in figure 3. 

In this manner, a dataset comprising52000 events was simulated, with the events randomly distributed across 

different x,y pixel positions on the detector. The experimental dataset consists of more than 18000 labeled 

events, collected from different experiments which were performed using different X-ray facilities (i.e. DELTA, 

EDDI, ESRF…etc.). The simulated and experimental datasets were used to feed the module during the training-

validation phase, after combining and shuffling them. 

 Totest the response of the trained module, only labeled experimental datasets from several experimental 

setups were utilized. This allows ensuringthe reliability of the module for any experimental data, regardless of 

the experimental conditions. 

 

 
Figure 3: Randomly chosen events from the simulated dataset. Single, double, triple and quadruple 

events are shown correspondingly in a,b,c, and d. 

 

V. NETWORK ARCHITECTURE 
 The events classifying architecture is shown in figure 4. It is composed of an input layer, followed by 

three 2D- convolutional (Conv2D) layers with rectified linear unit (ReLu) activation function, each of whichis 

connected with a maximizing pooling layer. The output of these layers is flattened and sent to a fully connected 
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layer with Softmax activation function. Anoutput layer contains five classes. In order to boost the performance 

of the CNN, the ReLu is coupled with dropout that has a rate of 35%. 

 

 
Figure 4: The convolutional neural network (CNN), containing an input layer, three pairs of 

convolutional and pooling layers, a fully connected layer and an output layer. 
 

 The hyper-parameters (i.e. the numbers of layers, the number of neurons in each layer, the size and 

number offilters, the stride size, the rate of dropout, the learning rate, the optimizer...etc.) have been selected by 

trial and error method, after extensivetestsof the performance of numerous architecture versions. 

 The events image data arestreamed as a 3D sparse-matrix, with 9 x 9 x 3 elements representing the X, 

Y sizes and 3 RGB-channels for each element respectively. The images are streamed as patches to the network, 

producingan output as probabilities of one of the five classes indicating the event type (single, double, triple, 

quadruple or unknown). The features of Keras library with TensorFlow back-end have been implemented for the 

network design. The data were split into two sets, i.e. the training set and the validation set, with splitting ratio 

of (90 - 10%). The training phase was executed using a machine with specifications provided in table 1. The 

network filter coefficients have been trained using the sparse-categorical cross-entropy loss function 

optimization with a learning-rate of 0.001. Adam optimizer has been utilizedto improve efficiency ofthe cost 

function with the default values offered by the author, namely β1 = 0.9, β2 = 0.999 and s = 10
−8

[24]. The model 

was fitted with 30 (see figures 5a and 5b) and 100 (see figures 5c and 5d) epochs, with the patch size of 128. 

The accuracy and loss curves for different number of epochs are presented in figure. 5. As shown in both 

modules, the weights converge within the first 30 epochs follow exponential decay function. Figure 5d displays 

linear converge behavior between 30 and 100 epochs. After more than 100 epochs, the validation loss starts 

diverging;this is an indication of over-fitting. Thus, a decision was taken to set100 epochs as the maximum 

value for training-validation phase. Figure 6 shows the summary of the layers and the parameters. At the end of 

the training-validation phase, two trained-modules have been generated for the testing phase, namely Events-

Classifier30 and Events-Classifier100. 

 

Table 1: Specifications of the system employed. 
Feature Specification 

Model Dell Latitude 5480 

Processor Intel Core i7-7600U 

Speed 2.8GHz(4 CPU) 

GPU Nvidia GeForce 930MX 
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Figure 5: The accuracy and loss curves. (a) and (b) are for 30 epochs, while (c) and (d) are for 100 epochs. 

The blue and orange lines are corresponding to the training and the validation phases respectively. 
 

VI. RESULTS 
The two trained-modules have been tested with the same testing datasets. The prediction accuracy has been 

calculated, as follows: 

 

Predictionaccuracy% =
Total number of the correctly predicted events

Total numberofevents
× 100 

 The module Events-Classifier30 shows the average prediction accuracy of≈ 92%, while the module 

Events-Classifier100 is able to reach more than 99% of the prediction accuracy relative to conventional 

evaluation tools. As a result, the CNN correctly predicts the events patterns and categorizes the streamed events 

in five different classes, namely single, double, triple, quadruple and fall-out events. Allinall, Events-

Classifier100 providesa reliable approach that can be used for further implementation. Both models give 

execution time of 3.9 ± 0.03 sec per 5 × 10
4
event (≈ 167 frame). However, this time is quite long compared with 

the current method which can perform the same data size in 1.1 ± 0.1 sec [11].  

 

 
Figure 6: Layers and parameters of the network architecture. 

 

VII. CONCLUSION AND OUTLOOK 
 This paper hasdemonstrated how DL-basedalgorithmscould be applied for event classification. The 

module, consisting of a multi-layer CNN,was trained onthe simulated and experimental datasets to extract the 

information enabling the prediction of event patterns. The testing phase, which was performed using 

theexperimental datasets, shows the model’s prediction accuracy up to 99%. 
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 As a next step, the DL-based approach will be extended to include the analysis of fall-out events. The 

focus will also be on the optimization of execution time to achieve a full classification of events in real-time. 
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