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ABSTRACT 

In this paper an attempt is made to develop a new 

Quantum Inspired Evolutionary Technique (QIET) that 

is general, flexible and efficient in solving single 

objective constrained optimization problems. It 

generates initial parents using quantum seeds. It is here 

that QIET incorporates ideas from the principles of 

quantum computation and integrates them in the 

current frame work of Real Coded Evolutionary 

Algorithm (RCEA).  It also incorporates Simulated 

Annealing (SA) in the selection process of Evolutionary 

Algorithm (EA) for child generation. In order to test 

this algorithm on domain specific manufacturing 

problems, Neuro-Fuzzy (NF) modeling of end milling 

process is attempted and the NF model is incorporated 

as a fitness evaluator inside the QIET to form a new 

variant of this technique, i.e. Quantum Inspired Neuro 

Fuzzy Evolutionary Technique (QINFET) and is 

effectively applied for process optimization of end 

milling process. The optimal process parameters 

obtained by QINFET correlates better than those 

reported in literature. The proposed methodology using 

QINFET is a step towards meeting the challenges posed 

in intelligent manufacturing systems and opens new 

avenues for parameter estimation and optimization. 

Keywords – End Milling, NF Modeling, QIET, QINFET.  

I. INTRODUCTION  
The last two decades have witnessed tremendous growth in 

the application of stochastic search techniques. The primary 

reason for this is that these are well suited to the concurrent 

manipulation of models of varying resolution and structure. 

This is due to their ability to search non-linear space without 

gradient information or a prior knowledge relating to model 

characteristic. The most important stochastic search 

techniques that have been popular are Evolutionary 

Strategies (ES), Genetic Algorithms (GA), Simulated 

Annealing (SA), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), Immune Algorithm, Tabu 

Search (TS) and Quantum-inspired Evolutionary Algorithms 

(QIEA).  

Many efforts have been made by researchers to overcome 

limitations of earlier algorithms such as slow and premature 

convergence by establishing a good balance between 

exploitation and exploration. One such effort resulted in the  

 

hybridization of Evolutionary Algorithms (EA) with other 

heuristics such as simulated annealing, local search, tabu 

search, hill climbing, dynamic programming, greedy random 

adaptive search procedure and quantum computing. This 

hybridization resulted in the improvement of performance in 

terms of convergence speed and quality of the solutions 

obtained by EA [1, 2].  

 

Hans Raj et al. [3] have proposed a hybrid Evolutionary 

Computational Technique (ECT) by combining GA and SA. 

It is a hybrid scheme which incorporates a real–coded GA to 

provide multi-point search along with simulated annealing 

method to overcome local convergence and the problem of 

multiple minima. This technique provides more rapid and 

robust convergence on many function optimization 

problems. Two levels of competition are introduced between 

the strings in the population to ensure that only the better 

strings continue in the population. The concept of 

―Acceptance Number‖ is introduced to ensure that more 

computational effort is devoted to search in ―better‖ regions 

of the search space. Constraints are handled by the use of 

the concept of penalty functions and by better coding. 

This paper proposes a new variant of Real Coded Quantum 

Evolutionary Algorithm (RCQEA) using quantum 

computation principles to seed initial populations in the 

current framework of ECT as proposed by Hans Raj et al. 

[3], namely, QIET, which is more suitable than ECT for a 

wide range of real-world numerical optimization problems. 

To verify its effectiveness it has been applied to optimize 

end milling cutting conditions to obtain the best compromise 

between two critical machining-related values: surface 

roughness and machining time. Spindle speed, feed rate, 

radial depth of cut and tolerance were optimized, while one 

of the two key performance values was kept in the desired 

range and the other one was minimized. 

The paper is organized as follows. The background material 

for quantum computation is described in section II. In 

section III QIET is described in detail.   In section IV Neuro 

Fuzzy modeling of end milling process is detailed and in 

section V the new Quantum Inspired Neuro Fuzzy 

Evolutionary Technique is explained and applied to end 

milling process. 

Quantum Inspired Evolutionary Technique for Optimization of End 

Milling Process 
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II. INTRODUCTION TO QUANTUM COMPUTATION  
A classical bit can only be in one of two states, 0 or 1 but 

according to the principles of quantum computation a qubit 

(or quantum bit) may be in the ‗1‘ state, in the ‗0‘ state, or in 

any superposition of the two. The state of a qubit can be 

represented as:  

0 1      
 

where α and β are complex numbers that specify the 

probability amplitudes of the corresponding states. α
2
 gives 

the probability that the qubit will be found in the ‗0‘ state 

and β
2
 gives the probability that the qubit will be found in 

the ‗1‘ state. Normalization of the state to unity guarantees 

2 2
1  

 

The interesting part is that until the qubit is measured it is 

effective in both states. The probability of measuring the 

answer corresponding to an original 0 bit is α
2
 and the 

probability of measuring the answer corresponding to an 

original 1 bit is β
2
 [4, 5].  

III. QUANTUM INSPIRED EVOLUTIONARY   

TECHNIQUE (QIET) 
In QIET the idea is to seed the initial population with a 

quantum approach in the framework of ECT.  The algorithm 

concentrated its search only in the permissible regions of the 

search space using penalty approach. QIET search technique 

starts out with a guess of N grandparents, chosen at random 

in the search space. Initially each grandparent generates a 

number of quantum parents. 

 Number of quantum parents is chosen to be 10. Larger 

population sizes might yield further improvement in the 

results obtained but would entail higher computational 

effort. All the variables are encoded as floating point 

numbers. The method selects grandparents as random 

numbers in the range (0, 1) for each element of 

chromosome. Considerably distant points in the solution 

space are generated as grandparents to avoid any domination 

of particular schemata during the initialization process. 

Initially all grandparents generate an equal number of 

quantum parents. The advantage of using a quantum seeded 

generation is that a number of quantum parents are 

generated with each grandparent without using GA. The 

idea is taken from the point of view that in a parental string 

any value generated will either be bigger or smaller than 

another randomly generated number, which is known as 

probability of finding this string value in a particular state. If 

the string value is less than the random probability it is 

retained as such else it is changed as:    

2
[1 ( ) ]StringValue  

This idea is in accordance with the principles of quantum 

computation as described in section II, which states that the 

probability of a qubit to be in any state satisfies the   

condition
2 2

1   . Thus in a single pass numerous 

quantum parents can be generated with a single grandparent. 

Each quantum parent is checked over its functional value 

and constraints violation. From these quantum parents 

further parents are selected. A quantum parent is made a 

parent only when it clears a criterion of the sum of penalties 

for all the constraints violated. Thus the total number of 

parents selected varies for each iteration and also varies with 

a particular run of the program. Now these parents are sent 

into ECT which is combined GA/SA and is used for further 

child generation.   

Initially all parents generate an equal number of children 

given by m(i) = M. A reasonable value of M is taken as 10. 

A higher value of M results in a more exhaustive search with 

a corresponding increase in computational effort. The total 

number of children in a generation is fixed and is given by:  

1

 = ( )
N

i

TC m i



 

For each parent i, mates are selected from the other parents 

at random and cross-over is applied to generate m(i)children. 

For each family a blend cross-over operator (BLX-α) based 

on the theory of interval schemata is employed in the study. 

BLX-α operates by randomly picking a point in the range 

(p1 - α (p2 - p1), p2 + α (p2 - p1)) where p1 and p2 are two 

parent points and p1<p2. In a number of test problems BLX-

0.5 performed better than the BLX operators with any other 

α values and has, therefore, been used. Mutation is not 

employed. 

 

The best child (with minimum objective value) out of the 

children generated from the same parent is found. The best 

child then competes with its parents to survive in the next 

generation. If the best child is better than its parent, it is 

accepted as a parent in the next generation. If the best child 

is worse than its parent then Boltzmann criterion is applied 

before the child be accepted. 

As in SA, the selection of temperatures is such that initially 

the probability of acceptance of a bad move, i.e. when the 

best child is worse than the parent is high (approximately 1) 

but as the temperatures are successively lowered through a 

cooling schedule this probability is decreased until, at the 

end, the probability of accepting a bad move is negligible 

(approximately 0). Logarithmic cooling schedule is adopted 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                        Vol.2, Issue.1, pp-172-178                   ISSN: 2249-6645 

 

www.ijmer.com                            174 | P a g e  

 

in this work. Such a strategy enables the technique to seek 

the global optimum without getting stuck in any local 

optimum. The initial and final temperatures are calculated as 

follows:  

 

A bad move is accepted according to the Boltzmann 

Criterion. Initially the probability of accepting a bad move is 

approximately one i.e. 

exp (-ΔXaverage/T1)=0.99 

and finally exp (-ΔX average/TMAXIT)=0.0001 

Therefore, T1=-ΔX average/log (0.99) 

TMAXIT = -ΔX average/log (0.0001) 

where T1 is the initial temperature, TMAXIT is the final 

temperature, ΔXaverage is the average difference between the 

objectives X for any two neighborhood points in the search 

space. This average is calculated over a number of 

chromosomes. 

 

The number of children that are generated in the next 

generation is proportional to a parameter called the 

acceptance number. This number provides a measure of the 

goodness of solutions in the vicinity of the current parent. 

The number is computed by sampling the search space 

around the current parent and counting the number of good 

samples out of the total samples as per steps 13 to 15 of the 

pseudo-code. This strategy enables the algorithm to focus 

search on the better regions of the search space. 

 

For highly constrained problems, infeasible solutions may 

occupy a relatively big portion of the population. The 

penalty technique is perhaps the most common technique 

used to handle infeasible solutions in the constrained 

optimization problems. In essence, this technique transforms 

the constrained problem into an unconstrained problem by 

penalizing infeasible solutions, in which a penalty term is 

added to the objective function for any violation of the 

constraints. The major concern is how to determine the 

penalty term so as to strike a balance between the 

information preservation (keeping some infeasible solutions) 

and the selective pressure (rejecting some infeasible 

solutions), and avoid both under penalty and over penalty. 

There are no general guidelines on designing penalty 

function. Constructing an efficient penalty function is quite 

problem dependent. The same has been incorporated in the 

QIET algorithm in evaluating the objective function i.e.  

Evol(X) =f(X) + β × D(X) 

where, β is the problem dependent constant, and D(X) is the 

difference measure for constraint violation. The result of 

such an approach is that the infeasible strings have much 

worse objective function values and are eliminated from the 

population whereas the strings with better objective function 

values survive and contribute more to the evolution of better 

solutions.  

The number of grandparents taken depends upon what is the 

criterion for the selection of parents from the quantum 

parents. The relaxation gives us choice to start with small 

number of grandparents. It is seen that more constrained the 

criterion for the selection of parents is, the better is the 

convergence. The initial generation of the quantum parent 

ensures that parents with a better fitness value are sent into 

GA to produce further children. This gives GA a better 

convergence towards the optimum solution. The results 

show that the convergence is very fast. The various features 

explained above have been combined together to develop an 

optimization algorithm and is represented succinctly in the 

form of pseudo-code given below:  

1. Generate random initial grandparent strings. 

2. Generate a random probability.  

3. If any of the string values is less than the random 

probability it is retained as such.  

4. Otherwise it is changed as
2

[1 ( ) ]StringValue . 

5.  Initialize T1 & TMAXIT with N parent string. 

6.  For each parent i , generate m(i) children using crossover       

7. Find the best child for each parent (1st level   of   

competition). 

8.  Select the best child as the parent for the next generation. 

For each family accept the best child as the parent for the 

next generation if 

1 2 2 1      exp[( - ) /  ] Y Y OR Y Y T  
 

             where 

             Y1 is the objective value of the best child 

             Y2 is the objective value of its parent 

             T   is the temperature co-efficient 

     ρ is a random number uniformly distributed between 0   

and 1. 

9.  Repeat step 10 to Step 13 for each family 

10. Count = 0 

11. Repeat step 11for each child: Go to step13   

12. Increase count by 1, if  

              ((Y1<Y2) exp ((YLOWEST-Y1)/T) ≥ ρ)  

where Y1 is the objective value of the child 

             Y2 is the objective value of its parent 

             YLOWEST  is the lowest objective value ever found 

             T   is the current temperature  

         ρ is a random number uniformly distributed between           

0 and 1. 

13. Acceptance number of the family is equal to count (A) 

14. Sum up the acceptance number of all the families (S) 

15. For each family i, calculate the number of children to be 

      generated in the next generation according to the     

following formula     m (i) = (TC × A) / S 

     where, TC is the total number of children generated by 

all the families. 

16. Decrease the temperature.  

17. Repeat Step 6 to Step 16 until a certain number of       

iterations has been reached. 
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IV. NEURO FUZZY MODELING OF END MILLING 

PROCESS 

Intelligent manufacturing systems require intelligent models 

that can help the manufacturer to meet the customer 

demands with existing infrastructure. The rising demand for 

precision and quality in manufacturing necessitates that vast 

amounts of manufacturing knowledge be incorporated in 

manufacturing systems. Neuro Fuzzy modeling of end 

milling process is attempted in this section. Surface finish in 

end milling depends upon a number of variables such as 

cutting speed, feed rate, spindle speed, radial depth of cut, 

tolerance etc. The relative effect of these variables on 

surface roughness and machining time is quite considerable. 

A complex relationship exists between these process 

parameters and hence there is a need to develop intelligent 

models which can capture this complex interrelationship and 

enable fast computation of the average surface roughness 

and machining time based on process parameters.  

Tansel et al. [6] have experimentally measured the surface 

roughness and the machining time at various test conditions. 

Aluminum block having 30x30x90mm dimensions was 

machined at three stages.  The first two stages, rough and 

semi finish cut were the same for the entire part. A flat end 

mill with a 12mm diameter was used for rough cutting. The  

depth of cut was 1.5mm. 3D spiral tool motions were 

performed with 3mm stopovers at 2500mm/min feed rate 

and 5000rpm spindle speed. The rough cutting continued 

until 0.6 mm thick material was left on the desired final 

surface. A ball end mill with a 12mm diameter was used at 

the second stage to machine the material with a 0.3mm 

depth of cut. The step over, feed rate and spindle speed were 

3mm, 700mm/min, and 3000rpm, respectively. After the 

second stage, 0.3 mm thick material was left on the desired 

part surface. The finishing cut (Third stage) was performed 

with a ball end mill with 10mm diameter. 

Finishing cut continued until the desired surface was 

obtained. The surface roughness of the machined surface 

was measured by using a Mitatoyu Surftest 301 portable 

surface roughness tester. The surface roughness was 

measured three times at 10 different regions for each cutting 

condition and average was calculated.  

The ranges of the cutting parameters are presented in table 1 

and the sample experimental values by Tansel et al.  and 

estimated values by neuro fuzzy model are shown in table 2.  

 

Cutting Speed     

(m/min) 

 

 

 

 

 

 

 

Feed Rate (mm/tooth) Radial Depth of cut   

(mm) 

Tolerance 

(mm) 

74-123 0.07-0.12 0.1-0.3 0.01-0.001 

Table 1 Range of cutting parameters 

No 

Cutting 

Speed 

(m/min) 

Feed   rate 

(mm/tooth) 

Radial 

depth 

of 

cut 

(mm) 

Tolerance 

(mm) 

Experimental values by 

Tansel et al. [6] 

Estimated values using 

Neuro Fuzzy Model 

Average surface 

roughness (µm) 
Machining 

Time (min) 

Average surface 

roughness (µm) 

Machining 

Time (min) 

1 74 0.07 0.1 0.001 0.26 64 0.26 64.00 

2 98.5 0.07 0.1 0.001 0.31 47 0.31 47.00 

3 123 0.07 0.1 0.001 0.27 45 0.27 45.00 

4 74 0.095 0.1 0.001 0.32 48 0.32 48.00 

5 98.5 0.095 0.1 0.001 0.36 36 0.35 35.99 

6 123 0.095 0.1 0.001 0.85 29 0.85 29.00 

7 74 0.12 0.1 0.001 0.48 39 0.48 39.00 

8 98.5 0.12 0.1 0.001 0.37 28 0.37 27.99 

9 123 0.12 0.1 0.001 1.58 24 1.58 23.99 

10 74 0.07 0.2 0.001 0.36 32 0.35 31.99 

11 98.5 0.07 0.2 0.001 0.59 24 0.59 23.99 

12 123 0.07 0.2 0.001 0.52 19 0.52 18.99 

13 74 0.095 0.2 0.001 0.51 23 0.51 23.00 

14 98.5 0.095 0.2 0.001 0.53 17 0.53 17.00 

15 123 0.095 0.2 0.001 0.81 15 0.81 15.00 

Table 2 Sample experimental and estimated values for given average surface roughness and machining time 
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Neuro-fuzzy inference system under consideration has four 

inputs as shown in figures 1 and 2 viz. cutting speed, feed 

rate, radial depth of cut, tolerance and one output machining 

time and average surface roughness each. The overall output 

is expressed as linear combinations of the consequent 

parameters. The output f can be written as: 

81

1

81
( ) ( ) ( ) ( ) ( )

1

f w fi i
i

f w p w q w r w s w ti i i i ii i i i i
i

   





    







 

.  

Fig. 1 A four input and one output (machining time) neuro-

fuzzy network model for end milling. 

 

 

Fig. 2 A four input and one output (average surface 

roughness) neuro-fuzzy network model for end milling. 

 

This is linear in the consequent parameters. The forward 

pass of the learning algorithm continues up to nodes at layer 

4 and consequent parameters are determined by the method 

of least squares. In the backward pass, the error signal 

propagates backward to update the premise parameters by 

gradient descent. 

The close agreement of the experimental values reported by 

Tansel et al. and the computed values after training NF 

model in table 2  clearly indicates that the model can be 

used for predicting the values in the range of parameters 

under consideration and is suitable to act as function 

approximator in QIET. The model is very fast and the time 

taken for prediction is negligible. The training information 

of Neuro-fuzzy model is shown in table 3. 

Number of nodes:  193 

Number of linear parameters:  405 

Number of nonlinear parameters:  36 

Total number of parameters:  441 

Number of training data pairs:  81 

Number of checking data pairs:  40 

Number of fuzzy rules:  81 

 

Table 3 Training parameters of NF architecture for end 

milling process. 

 

V. QUANTUM INSPIRED NEURO-FUZZY   

EVOLUTIONARY TECHNIQUE (QINFET) AND 

IT’S APPLICATION TO END MILLING PROCESS 

In this section end milling process is chosen to demonstrate 

the effectiveness of the hybrid approach formulated by 

integrating Neuro-Fuzzy (NF) network models, genetic 

algorithms (GA) and simulated annealing (SA) for process 

optimization to form a novel hybrid technique namely 

Quantum Inspired Neuro-Fuzzy Evolutionary Technique 

(QINFET). The optimization is performed using the 

Quantum Inspired Evolutionary Technique (QIET) 

algorithm which requires that the fitness function is easily 

computable for the method to be computationally tractable 

[7]. A NF model is used to provide the fitness function value 

in the QIET. Thus QINFET uses neuro-fuzzy network 

model in tandem with Quantum Inspired Evolutionary 

Technique (QIET) in determining the optimal process 

parameters. The NF model intelligently determines the 

average surface roughness and machining time for a given 

set of input process parameters. Once the NF model is ready 

it is incorporated in the QIET algorithm for fitness 

evaluation while finding optimal values. This integration of 

NF model enables fast computation of fitness function                                

which is the primary requirement for successful 

implementation of the evolutionary optimization.  This 

approach of using a Neuro-Fuzzy in QIET is quite similar to 

that of meta-model. The cutting conditions of end milling 

process were optimized using the QINFET to obtain the best 

compromise between two critical machining-related values: 

surface roughness and machining time. Spindle speed, feed 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                        Vol.2, Issue.1, pp-172-178                   ISSN: 2249-6645 

 

www.ijmer.com                            177 | P a g e  

 

rate, radial depth of cut and tolerance were optimized, while 

one of the two key performance values was kept in the 

desired range and the other one was minimized. QINFET 

generated a series of alternatives for the user. The results 

demonstrated the compromise between the machining time 

and estimated surface roughness. When the minimization of 

the surface roughness requested, QINFET selected high 

cutting speed and very small feed rate. To minimize the 

machining time, very high cutting speed and the feed rate 

were selected. The surface roughness deteriorated in these 

cases. The tendency of the estimations of the QINFET 

agreed with the theoretical expectations. 

 

 The optimal parameters were found after 50 runs of 

QINFET algorithm for average surface roughness and 

machining time. Table 4 and 5 shows comparison of 

optimized results between those reported by Tansel et al. 

and QINFET algorithm.  

  

The optimization results using QINFET as indicated in 

tables below  show a close agreement with the optimized 

results reported by Tansel et al. [6] using Genetically 

Optimized Neural Network System (GONNS). The 

Quantum Inspired Neuro Fuzzy Evolutionary Technique 

(QINFET) is a flexible and versatile technique that can be 

used for intelligent modeling and optimization of process 

parameters.      

 

 

VI. CONCLUSION 
In this paper Quantum Inspired Evolutionary Technique 

(QIET) is presented. The technique has been carefully 

designed with various features that enable it to seek the near 

global optimum rapidly without getting stuck in the local 

optima. The algorithm allows a natural coding of design 

variables by considering continuous variables. 

 

 

Range is 

selected 

for 

Critical Parameters 
Optimized operating conditions – the minimized critical parameter is 

underlined 

Machining 

time          

(min) 

Machining time 

(min) 

Surface Roughness                         

(µm) 

Cutting speed 

(m/min) 

Feed rate   

(mm/tooth) 

Radial depth of  

cut  (mm) 

Tolerance(mm) 

Tansel QINFET Tansel QINFET Tansel QINFET Tansel QINFET Tansel QINFET Tansel QINFET 

7.3-65 54.98 41.22 0.14 0.14 89.50 84.39 0.07 0.07 0.1 0.1 0.01 0.01 

7.3-10 9.99 9.00 0.34 0.25 88.64 88.58 0.12 0.12 0.27 0.30 0.001 0.001 

7.3-20 15.96 15.30 0.207 0.206 86.26 85.62 0.08 0.10 0.3 0.23 0.001 0.001 

Table 4 Comparison of Optimization Results obtained by Tansel et al. and QINFET   

(Minimization of Surface Roughness) 

 

 

 

 

Range is 

selected 

for 

Critical Parameters 
Optimized operating conditions – the minimized critical parameter is 

underlined 

Surface 

Roughness 

(µm) 

Machining time (min) Surface Roughness                         

(µm) 

Cutting speed 

(m/min) 

Feed rate   

(mm/tooth) 

Radial depth of  

cut  (mm) 

Tolerance(mm) 

Tansel QINFET Tansel QINFET Tansel QINFET Tansel QINFET Tansel QINFET Tansel QINFET 

0.2-1.58 7.17 7.00 1.01   0.50 122.99 115.77 0.12 0.12 0.3 0.3 0.001 0.001 

0.2-0.50 8.68 8.11 0.5 0.51 97.92 96.28 0.12 0.11 0.29 0.29 0.001 0.001 

0.2-0.80 7.39 7.01 0.68 0.61 123 104.80 0.12 0.12 0.3 0.3 0.01 0.01 

 Table 5 Comparison of Optimization Results obtained by Tansel et al. and QINFET  

(Minimization of Machining Time) 
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This may give designer more flexibility in the 

optimization problems. This technique is further 

generalized by incorporating provision to embed Neuro-

Fuzzy models as fitness evaluators to create Quantum 

Inspired Neuro Fuzzy Evolutionary Technique 

(QINFET). Subsequently this new technique is applied to 

process optimization of end milling process and the 

results are presented. The proposed design scheme helps 

to achieve the desired level of control needed to avoid 

costly production problems and ensures economical 

production of quality products. QINFET demonstrates 

promise in optimizing complex industrial processes 

pertaining to intelligent manufacturing systems for 

achieving energy and material saving, quality 

improvement in the end product.  
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