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ABSTRACT

To estimate the population mean with imputation, i.e. the technique of substituting missing data, there are a
number of techniques available in literature like Ratio method of imputation, Compromised method of imputation,
Mean method of imputation, Ahmed’s methods of imputation, F-T methods of imputation and so on. If population
mean of auxiliary information is unknown then these methods are not useful and the two-phase sampling is used to
obtain the population mean. This paper presents some imputation methods of for missing values in two-phase
sampling. Two different sampling designs in two-phase sampling are compared under imputed data. The bias and
m.s.e of suggested estimators are derived in the form of population parameters using the concept of large sample
approximation. Numerical study is performed over two populations using the expressions of bias and m.s.e and
efficiency compared with Ahmed’s estimators.

Keywords: Estimation, Missing data, Bias, Mean squared error (M.S.E), Two-phase sampling, SRSWOR, Large
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1. INTRODUCTION:

To overcome the problem of missing observations or non-response in sample surveys, the technique of
imputation is frequently used to replace the missing data. To deal with missing values effectively Kalton et al.
(1981) and Sande (1979) suggested imputation that make an incomplete data set structurally complete and its
analysis simple. Imputation may also be carried out with the aid of an auxiliary variate if it is available. For example
Lee et al. (1994, 1995) used the information on an auxiliary variate for the purpose of imputation. Later Singh and
Horn (2000) suggested a compromised method of imputation. Ahmed et al. (2006) suggested several new imputation
based estimators that use the information on an auxiliary variate and compared their performances with the mean
method of imputation. Shukla (2002) discussed F-T estimator under two-phase sampling and Shukla and Thakur
(2008) have proposed estimation of mean with imputation of missing data using F-T estimator. Shukla et al. (2009)
have discussed on utilization of non-response auxiliary population mean in imputation for missing observations and
Shukla et al. (2009a) have discussed on estimation of mean under imputation of missing data using factor type
estimator in two-phase sampling. Shukla et al. (2011) suggested linear combination based imputation method for
missing data in sample. The objective of the present research work is to derive some imputation method for mean
estimation in case population parameter of auxiliary information is unknown.

2. NOTATIONS:

Let U = (Uy, Uy, Us,...,Uy) be the finite population of size N and the character under study be denoted by y.
A large preliminary simple random sample (without replacement) S* of n" units is drawn from the population on U
and a secondary sample S of size n (n < n' ) is drawn in either two ways: One is as a sub-sample from sample S
(denoted by design 1) as in fig. 1 and other is independent to sample S° (denoted by design I1) as in fig. 2 without

replacing S'. The sample S can be divided into two non-overlapping sub groups, the set of responding units, by R,
and that of non- responding units by R® and the number of responding units out of sampled n units be denoted by r
(r<n). For every unit i R the value y;is observed, but for the unitsi R, the y; are missing and instead imputed
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values are derived. The i value X; of auxiliary variate is used as a source of imputation for missing data when
icR°. Assume for S, the data x, ={x :ieS} and for i"€S’, the data {x :i €S’} are known with mean
X= (n)’lixi and x = (n')’lixi respectively. The following symbols are used hereafter:

i=1 i=1
X, Y :the population mean of X and Y respectively; §<, y : the sample mean of X and Y respectively;
Xr, yr : the sample mean of Xand Y respectively; p,, :the correlation coefficient between X and Y ;
S2, SZ: the population mean squares of X and Y respectively; C, , C, : the coefficient of variation of X and Y

. 11 1 1 1 1 1 1 1 1 r
respectively; o,=|=-=1|; o,=|—-=1; &6,=|—=———|; J,=|—- - O =|—— - f=—,

P yl(rn)z[nnj3(an“(rN—n]S(nN—njln

(69 =34 )J3 +J5) D= (611 — 64 )83 +64)
[510(53 + 55)_552] [511(53 + 54)— 55]

C=

3. LARGE SAMPLE APPROXIMATIONS:

Population (N)
Population (N)

Y X ¥ X B

Y X vy X
g
o D
n. x
n. x
Fig. 1 [Design 1] Fig. 2 [Design I1]
Let y, =Y(l+e,); x =X(+e,); x=X(1+e,) and x = X(L+e,) , which implies the results ¢, :%—1;

e, :% -1; e, = % -1 and e, = X? —1. Now by using the concept of two-phase sampling and the the
mechanism of MCAR, for given r, n and n'(see Rao and Sitter (1995)) we have:
Designs E,) E(e;) E(ef) E(ej) E(e§) E(e'g)
| 0 0 5,C! S5,C? 5,C? 8,C?
11 0 0 6,C! s,C 5,C2 5,C?
Designs | ECe) | Eee) | Ebe) | Eee) | Ebe) | EGe)
I spC,C, | 6,pC,C, s,0C, C, s, C? 5,C; 5,C;
1 o,pC,Cy | 6,pC,Cy 0 S, Ck 0 0
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4. PROPOSED STRATEGIES:
Let y'ji denotes the i observation of the j" suggested imputation strategy and b;, b,, by are constants such

that the variance of obtained estimators of Y is minimum. We suggest the following tools of imputation:

V. if ieR
(1) Yai = ..(41)
v, +bil —x )] if ieRrS
under this strategy, the point estimator of Y is given by th=Vy, +b1(>_<—>_<r) ...(42)
y. if ieR
2 o - (.
@ Y, +—b2 (x —x) if ieR° (4-3)
(l_ f1)
under this , the estimator of Y is  t5 =y, +b2(>_(‘ —)?) (4.4
y if iR
3 =4 - - ...(4.5
B Y y, + b, (x—xr) if ieR° *3)
(1_ fl)
hence the estimator of Y is =y, +b3(>_<v —>_<,) ...(4.6)

5. BIAS AND MEAN SQUARED ERROR OF PROPOSED ESTIMATORS:
Let B(.); and M(.); denote the bias and mean squared error (M.S.E.) of an estimator under a given sampling

design t = I, 11, then the bias and m.s.e of t,, t;and t, are derived in the following theorems. The proofs of all these
results are similar and therefore we will proof only one of them i.e. theorem 5.1.
Theorem 5.1:
Q) Estimator t; interms of e ; =123 and e, could be expressed:
t,=Y(1+e)+b X(e;—e,) ..(5.1)

by ignoring the terms E[ei’ej], Eki‘(e;f] for r+s>2,where r,s=012,..and i=123;j=2,3 whichis first
order of approximation.

Proof: th=Yy, +b1(>_<—>_<r) =Y(+e)+ blf(e3 —e2)
(2) Bias of t, under design I and Il is:
0 Bf;] =0 (5.2)
iy B, =0 .(5.3)
Proof:
(i) 8lt,), =€k, -], =¥ - =0
(ii) B(t;l)u :E[tll _V]II =Y-Y=0
3) The variance of t,, under design | and 11, upto first order of approximation could be written as:
i) Vi) =652 +(5 -5, )b2S2 — 20,08, ) ..(5.4)
i) Vi), = .52 +(5, -5 Yb2S2 — 20,08, 5y ) ..(5.5)

Proof: V(t;): E[t;1 —\7]2 = E[\?el +bly(e3 & )]2

- E[\?zef 02X ey e, f + 20,V X e —e, )el]
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= E[\?Zef 02X (e§ +es— 2e2e3)+ 2bY X (e85 —ere, )} ...(5.6)

(M Under Design | (Using (5.6))
v(t;), = [ Vac2 +b2X2(5,C2 +5C2 —252(:§)+2b1\7f(52chcx ~5,C,Cy )]
_[5,57 + 282 (6, - 8,)- 26,(8, - 5, )8, Sy |

= [5153 +(51 _52){312S>2< —2b PS8y Sy }]
(i) Under Design 11 (Using (5.6))

V(t;‘ )ll - [?zélc\? + blz?z(55c>2< +6,C% —255C§ )+ 2b1?§(5spcvcx —640CyCy )}

5,52 +b252 (6, - 6,)~ 20,(5, — 565, S |

4) The minimum variance of the t, is
. ' S
(i) [\/(t4)| ]Min = [51 —(6, -3, )pz] Sy when b, = P L(5.7)
X
- - S
i ML =[5 -6 -5)02] 52 when b, = - .(5.8)
X
Proof:
0] By differentiating (5.4) with respect to b, and equate to zero, we get
d . S
—Nity )] =0 =b =p—"
dbl (4)l ] bl P SX
After replacing the value of b, in (5.4), we obtained
V) Ly =683 46~ 33?57 - 2075%)
~[o-(6-2,)7] 8
(i) Similar to (i), we proceed for (5.5), we have
d - S
— Mty )| =0 =b=p—"
dbl (4)” ] b.l. P SX
After replacing the value of b, in (5.5), we obtained
Wt Lo = 3487 + (64 -5 o7 ~2,78¢
= [54 _(54 _55)/?2] Sy
Theorem 5.2:
(5) The estimator t; in terms of e;,e,,e;ande; is :
ty =Y(L+e)+b, X [es —e5) ..(5.9)
(6) The bias estimator t; , under design I and 11 respectively is
0 Bf:] =0 ..(5.10)
i sl =0 .(5.11)
(7 The variance of t,, under design | and 11 respectively is:
i) Vi) =652+(5,-5,)b2s3 —2b,05,Sy ) ..(5.12)
() V), = 6,52 +(5; + 55 b2S2 — 20,5,p5, Sy ..(5.13)
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(8) The minimum variance of the t; is

. - S
W V)], =[5 -6 -8)0%] 82 when b, = p-"- (5.14)
X
. - . O S
(i) [\/(tS)”]Min :[54—552(53+55) 1,02] S2  when b, :[5—5Jp—Y ...(5.15)
3+0s5 ) Sx
Theorem 5.3:
9) The estimator t, in terms of e;,e,,e; ande; is:
te =Y(L+e)+ b3Y(eé —ez) ...(5.16)
(10)  The bias estimator t, , under design | and 11 respectively is:
0 Bf:] =0 (517
i) ], =0 .(5.43)
(11)  The variance of t,, under F, and F, is
(i) Ve ), = 6,82 + (5, — 5, \b2S2 — 2y, S ) ...(5.18)
(i) V), =552 +(8; + 5, 0283 — 20,8,05, Sy ..(5.19)
(12)  The minimum variance of the t; is
. ' S
M V)L =[5 -6 -5,)02] 52 when s = p o ..(5.20)
X
.. - . 9, S
i M) =l - 626+ 5,02 57 when b, =[5—4Jp—Y (5.21)
3+04) Sy
6. COMPARISIONS:
@ A= mmﬁ/ ] mmﬁ/ )] —[———}SY
0 . N-n : -
(t4),|sbetterthm t,, if A, >0 =>[ N 1>0 =N-n >0 =>n <N
n
which is always true.
. 1
) A, =m|nB/ ] mmﬁ/ ), :[ - .—W}SYZ
: : N-N+n :
t, ), is better tha t,, if A, >0 = >0 =n>0
(4)” 4 2 {m}
which is always true.
. 2 2| 2.0
3 A; =min min =|—=-—1S ———=1|pS;
“ 3&]N][N}Y[Nn}
1 1
( )lsbetterthan ts, if A; >0 :>_E<p<5
@) Ay=minl) ] —minlE),] =[6—6,] 2|5 —(5, + 65 62] p2s?
( ) is better tha t, if A, >0 = p° < (% ~6,)3; +5) = -C<p< C

[510(53 + 55)_ 552]

(5) AS:minE/ ] mmﬁ/ ] { —W}S$+{%—%}p28§
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(t(;), is better tha tg, if A, >0 = 2{%—%}02 <(ni—%j = —%< P <%
© Ay =minlv(,) | —minfv(t,), ] =[oi - 0] 87 [ (6 + 5 262 72

(511 =4, )(53 + 54)

= -D<p< D
[511(53 + 54)— 55]

(tg)” is better tha tg, if As > 0 = p? <
7. NUMERICAL ILLUSTRATIONS:

We considered two populations A and B, first one is the artificial population of size N = 200 [source Shukla
et al. (2009)] and another one is from Ahmed et al. (2006) with the following parameters:

Table 7.0 Parameters of Populations A and B

Population N Y X S;? S? P C, C,
A 200 42.485 18.515 199.0598 48.5375 0.8652 0.3763 0.3321
B 8306 | 253.75 343.316 338006 862017 0.522231 2.70436 2.29116

Let n'=60, n=40, r=5 for population A and n = 2000, n =500, r = 15 for population B respectively.
Then the bias and M.S.E for suggested estimators under design | and Il , using the expressions of bias and M.S.E.
derived in Section 5 for suggested estimators are shown in table 7.1 and 7.2 respectively. The bias and M.S.E. for
Ahmed’s estimators (see Appendix A) are displayed in table 7.3 for population A and B respectively.

Table 7.1 Bias and MSE (Population A)

DESIGN | DESIGN 1l
Estimators - -
Bias MSE Bias MSE
t;l 0 10.41747 0 12.31328
to 0 36.99100 0 36.78069
te 0 10.91418 0 11.29167
Table 7.2 Bias and MSE (Population B)
Estimators DESIGN I DESIGN Il
Bias MSE Bias MSE
t;l 0 16403.58 0 16518.98
to 0 22261.45 0 22339.40
te 0 16300.30 0 16384.03
Table 7.3 Bias and MSE for Ahmed’s Estimators (Population A and B)
. Population A Population B
Estimators Bias MSE Bias MSE
t, 0 12.73984 0 16531.89
ts 0 35.83645 0 22319.77
tg 0 9.759633 0 16358.62

The sampling efficiency of suggested estimators under design | and Il over Ahmed’s estimators is defined as:
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i:M; i =45,6; j=1L1 (7.1)
optm(t, )

The efficiency for population A and B respectively given in table 7.4.

Table 7.4 Efficiency of Suggested Estimators in Design | and Il over Ahmed’s Estimators

Efficienc Population A Population B
y Design | Design |1 Design | Design |1
E, 0.817709 0.966518 0.992239 0.999219
Es 1.032217 1.026349 0.997387 1.000879
= 1.118298 1.156977 0.996435 1.001553

8. DISCUSSIONS:

The idea of two-phase sampling is used while considering the auxiliary population mean is unknown. Some
strategies are suggested for missing observations in Section 4 and the estimators of population mean are derived.
Properties of estimators like bias and m.s.e are discussed in the Section 5 and the optimum value of parameters for
minimum mean squared error is obtained as well in the same section. Ahmed’s estimators are considered for relative
comparison. Two populations A and B considered for numerical study first one from Shukla et al. (2009) and
another one is Ahmed et al. (2006). The sampling efficiency of suggested estimator under design | and Il over

Ahmed’s estimators is obtained and suggested strategy is found very close with Ahmed et al. (2006) when X
unknown.

9. CONCLUSIONS:
The proposed estimators are useful when some observations are missing in the sample and population mean
of auxiliary information is unknown. Obviously from Table 7.1 and 7.2, all suggested estimators are better in design

| than design 11 i.e. the design | is better than design 11. The table 7.4 shows that the suggested estimators t; and t,

are very close with Ahmed’s estimators and may be used to estimate the population mean while population
parameter of auxiliary information is unknown.
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APPENDIX - A
Proposed Methods of Ahmed et al. (2006):

Ahmed et al. (2006) proposed some imputation methods and derived their properties. Authors are
discussing with three methods of them. Let y, denotes the i available observation for the j™ imputation and

b, ,i=123 is a suitably chosen constant, such that the variance the resultant estimator is minimum. Imputation
methods are :

Y, if ieR
1) Yai = (D)
[y, +bfc-x )| it ierC
under this strategy, the point estimator of Y is t, = §r +b1()_(—)_(r) ...(2)
Theorem: The bias, variance and minimum variance at b, =p% of t, isgiven by
X
(i) Bt,]=0 ..(3)
.. 1 13, o1 1)\, 11
i Vit,) =| === Sy +b/|=—=[Sx =2b|=—=S ...(4
(i) (4) (r va bl(r nj X bl(r n) XY 4)
1 1), (1 1)S%
Vit, ) . =|=—— Sy -|———|—=— ...(5
Y, if ieR
2 ={- — - ...(6
@) Vs y, + nb, (X —x) if ieR° ©
(n-r)
under this strategy, the point estimator of Y is ts =y, +h, (Y—)?) (7
Theorem: The bias, variance and minimum variance at b, :p% of tg isgiven by
X
(i) Blts|=0 ..(8)
.. 1 1.2 o1 1).» 1 1
i Vit: | =|=——|Sy +by| =——[Sx —2b,| =—— S ...(9
(i) (5) (r va Z(n Nj X Z(n Nj XY )
(1 1)z (1 1)Sk
(lll) V(ts )min _(F_WJSY —(H—Wj¥ (10)
Y if ieR
3 =4 — - (11
G Ya=1g . " (3 %) if iR (h
(n-r)
under this , the estimator of Y is  t; =y, +b3(Y—)_(r) ...(12)
Theorem: The bias, variance and minimum variance at b, =p% of tg isgiven by
X
(i) Blts]=0 ...(13)
. 1 1
(ii) v(tﬁ) {F_W)(SYZ +h2s2 —2bgsxy) ...(14)
1 1
iy Vi) :(?_ﬁ] 21— p2) .(15)
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