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ABSTRACT 

 To estimate the population mean with imputation, i.e. the technique of substituting missing data, there are a 

number of techniques available in literature like Ratio method of imputation, Compromised method of imputation, 

Mean method of imputation, Ahmed’s methods of imputation, F-T methods of imputation and so on. If population 

mean of auxiliary information is unknown then these methods are not useful and the two-phase sampling is used to 

obtain the population mean. This paper presents some imputation methods of for missing values in two-phase 

sampling. Two different sampling designs in two-phase sampling are compared under imputed data. The bias and 

m.s.e of suggested estimators are derived in the form of population parameters using the concept of large sample 

approximation. Numerical study is performed over two populations using the expressions of bias and m.s.e and 

efficiency compared with Ahmed’s estimators. 

Keywords: Estimation, Missing data, Bias, Mean squared error (M.S.E), Two-phase sampling, SRSWOR, Large 

sample approximation. 

 1.  INTRODUCTION: 

 To overcome the problem of missing observations or non-response in sample surveys, the technique of 

imputation is frequently used to replace the missing data. To deal with missing values effectively Kalton et al. 

(1981) and Sande (1979) suggested imputation that make an incomplete data set structurally complete and its 

analysis simple. Imputation may also be carried out with the aid of an auxiliary variate if it is available. For example 

Lee et al. (1994, 1995) used the information on an auxiliary variate for the purpose of imputation. Later Singh and 

Horn (2000) suggested a compromised method of imputation. Ahmed et al. (2006) suggested several new imputation 

based estimators that use the information on an auxiliary variate and compared their performances with the mean 

method of imputation. Shukla (2002) discussed F-T estimator under two-phase sampling and Shukla and Thakur 

(2008) have proposed estimation of mean with imputation of missing data using F-T estimator. Shukla et al. (2009) 

have discussed on utilization of non-response auxiliary population mean in imputation for missing observations and 

Shukla et al. (2009a) have discussed on estimation of mean under imputation of missing data using factor type 

estimator in two-phase sampling. Shukla et al. (2011) suggested linear combination based imputation method for 

missing data in sample. The objective of the present research work is to derive some imputation method for mean 

estimation in case population parameter of auxiliary information is unknown. 

2.  NOTATIONS: 

 Let U = (U1, U2, U3,…,UN) be the finite population of size N and the character under study be denoted by y. 

A large preliminary simple random sample (without replacement) 'S  of 'n  units is drawn from the population on U 

and a secondary sample S of size  n ( n < 'n  ) is drawn in either two ways: One is as a sub-sample from sample 
'S

(denoted by design I) as in fig. 1 and other is independent to sample 'S  (denoted by design II) as in fig. 2 without 

replacing 'S . The sample S can be divided into two non-overlapping sub groups, the set of responding units, by R, 

and that of non- responding units by R
c
 and the number of responding units out of sampled n units be denoted by r 

(r<n). For every unit Ri the value yi is observed, but for the units CRi , the yi  are missing and instead imputed 
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values are derived. The i
th  

value ix  of auxiliary variate is used as a source of imputation for missing data when 

CRi .  Assume for S, the data  Sixx
is

 :  and for '' Si  , the data  '':' Six
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  are known with mean 
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3. LARGE SAMPLE APPROXIMATIONS:  

 Let  
1

1 eYy
r
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2

1 eXx r  ;  
3
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X
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e . Now by using the concept of two-phase sampling and the the 

mechanism of MCAR, for given r, n and 'n (see Rao and Sitter (1995)) we have: 
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4.  PROPOSED STRATEGIES:  

Let  
'

j i
y  denotes the i

th
 observation of  the j

th
 suggested imputation strategy and 321 ,, bbb are constants such 

that the variance of obtained estimators of Y  is minimum. We suggest the following tools of imputation: 
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under this strategy, the point estimator of Y  is given by  rr xxbyt  1
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under this , the estimator of Y  is 
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hence the estimator of Y  is  rr
xxbyt 

'

3
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6
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5. BIAS AND MEAN SQUARED ERROR OF PROPOSED ESTIMATORS: 
 Let B(.)t and M(.)t denote the bias and mean squared error (M.S.E.) of an estimator under a given sampling 

design t = I, II, then the bias and m.s.e of '
4t , '

5t and '
6t  are derived in the following theorems. The proofs of all these 

results are similar and therefore we will proof only one of them i.e. theorem 5.1. 

Theorem 5.1:  

(1) Estimator '
4t  in terms of 3,2,1   ; ie

i
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3
e  could be expressed:  
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order of approximation. 
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(2) Bias of  '
4t  under design I and II  is: 
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(3) The variance of '
4t , under design I and II, upto first order of approximation could be written as: 
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 (i) Under Design I (Using (5.6)) 
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(4) The minimum variance of the '
4t  is 
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 (8) The minimum variance of the '
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7.  NUMERICAL ILLUSTRATIONS: 
 We considered two populations A and B, first one is the artificial population of size N = 200 [source Shukla 

et al. (2009)] and another one is from Ahmed et al. (2006) with the following parameters: 

       Table 7.0 Parameters of Populations A and B 

Population N Y  X  
2

Y
S  2

X
S    

X
C  

Y
C  

A 200 42.485 18.515 199.0598 48.5375 0.8652 0.3763 0.3321 

B 8306 253.75 343.316 338006 862017 0.522231 2.70436 2.29116 

 Let 'n = 60, n = 40, r = 5 for population A and 'n = 2000, n = 500, r = 15 for population B respectively. 

Then the bias and M.S.E for suggested estimators under design I and II , using the expressions of bias and M.S.E. 

derived in Section 5 for suggested estimators are shown in table 7.1 and 7.2 respectively. The bias and M.S.E. for 

Ahmed’s estimators (see Appendix A) are displayed in table 7.3 for population A and B respectively.      

Table 7.1 Bias and MSE (Population A) 

Estimators 
DESIGN I DESIGN II 

Bias MSE Bias MSE 

'
4t  0 10.41747 0 12.31328 

'
5t  0 36.99100 0 36.78069 

'
6t  0 10.91418 0 11.29167 

 

Table 7.2 Bias and MSE (Population B) 

Estimators  DESIGN I DESIGN II 

Bias MSE Bias MSE 

'
4t  0 16403.58 0 16518.98 

'
5t  0 22261.45 0 22339.40 

'
6t  0 16300.30 0 16384.03 

 

Table 7.3 Bias and MSE for Ahmed’s Estimators (Population A and B) 

Estimators 
Population A Population B 

Bias MSE Bias MSE 

4t  0 12.73984 0 16531.89 

5t  0 35.83645 0 22319.77 

6t  0 9.759633 0 16358.62 

 

            The sampling efficiency of suggested estimators under design I and II over Ahmed’s estimators is defined as:   
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The efficiency for population A and B respectively given in table 7.4. 
 

                 Table 7.4 Efficiency of Suggested Estimators in Design I and II over Ahmed’s Estimators 

Efficiency 
Population A Population B 

Design I Design II Design I Design II 

4E  0.817709 0.966518 0.992239 0.999219 

5E  1.032217 1.026349 0.997387 1.000879 

6E  1.118298 1.156977 0.996435 1.001553 

8.  DISCUSSIONS: 
 The idea of two-phase sampling is used while considering the auxiliary population mean is unknown. Some 

strategies are suggested for missing observations in Section 4 and the estimators of population mean are derived. 

Properties of estimators like bias and m.s.e are discussed in the Section 5 and the optimum value of parameters for 

minimum mean squared error is obtained as well in the same section. Ahmed’s estimators are considered for relative 

comparison. Two populations A and B considered for numerical study first one from Shukla et al. (2009) and 

another one is Ahmed et al. (2006). The sampling efficiency of suggested estimator under design I and II over 

Ahmed’s estimators is obtained and suggested strategy is found very close with Ahmed et al. (2006) when X  

unknown. 

9. CONCLUSIONS: 
The proposed estimators are useful when some observations are missing in the sample and population mean 

of auxiliary information is unknown. Obviously from Table 7.1 and 7.2, all suggested estimators are better in design 

I than design II i.e. the design I is better than design II. The table 7.4 shows that the suggested estimators  '
5t  and

 
'
6t

are very close with Ahmed’s estimators and may be used to estimate the population mean while population 

parameter of auxiliary information is unknown. 
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APPENDIX – A 

Proposed Methods of Ahmed et al. (2006): 

Ahmed et al. (2006) proposed some imputation methods and derived their properties. Authors are 

discussing with three methods of them. Let 
j i

y
 
denotes the i

th
 available observation for the j

th
 imputation and 

3,2,1 ,   ibi  is a suitably chosen constant, such that the variance the resultant estimator is minimum. Imputation 

methods are : 
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