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ABSTRACT 
In this paper we introduced the Stokes equations with a 

boundary condition of type (D+N). 

The weak formulation obtained is a problem of 

saddle point type. We have shown the existence and 

uniqueness of the solution of this problem. We used the 

discretization by mixed finite element method with a 

posteriori error estimation of the computed solutions. In 

order to evaluate the performance of the method, the 

numerical results are compared with some previously 

published works or with others coming from commercial 

code like Adina system. 

Keywords - Stokes Equations, Mixed Finite element 

method, a posteriori error estimation, Adina system. 

I. INTRODUCTION 

In modeling flow in porous media, it is essential to use a 

discretization method which satisfies the physics of the 

problem, i.e. conserve mass locally and preserve continuity 

of flux. The Raviart-Thomas Mixed Finite Element (MFE) 

method of lowest order satisfies these properties. Moreover, 

both the pressure and the velocity are approximated with the 

same order of convergence [4, 6]. The discretization of the 

velocity is based on the properties of Raviart-Thomas. Other 

works have been introduced by Brezzi, Fortin, Marini, 

Dougla and Robert [4, 5, 7]. 

This method was widely used for the prediction of 

the behavior of fluid in the hydrocarbons tank. 

 A posteriori error analysis in problems related to fluid 

dynamics is a subject that has received a lot of attention 

during the last decades. In the conforming case there are 

several ways to define error estimators by using the residual 

equation. in particular, for the Stokes problem, M. 

Ainsworth, J. Oden [9], R.E. Bank, B.D. Welfert [10], C. 

Crestensen, S.A. Funken [11], D. Kay, D. Silvester [12] and 

R. Verfurth  [13], introduced several error estimators and 

provided that that they are equivalent to the energy norm of 

the errors. Other works for the stationary Navier-Stokes 

problem have been introduced in [14, 17, 18, 20, 16]. 

This paper describes a numerical solution of Stokes 

equations with a boundary condition noted (D+N). For the 

equations, we offer a choice of tow-dimensional domains on 

which the problem can be posed, along with boundary 

conditions and other aspects of the problem, and a choice of 

finite element discretization on a rectangular element mesh. 

The plan of the paper is as follows. The model problem is  

 

 

 

described in sections II, In Section III, we prove the 

existence and uniqueness of the solution of the weak 

formulation obtained, followed by a mixed finite element 

discretization for the Stokes equations in section IV. In 

section V we consider a posteriori error bounds of the 

computed solution, and numerical experiments are carried 

out in section VI. 

II. GOVERNING EQUATIONS  

We consider the Stokes equations for the flow;                                                       (2.1) 

                                               (1)                    

                                                       (2)     

                   (3) 

  is the fluid velocity,  is the pressure field. is the 

gradient,   is the divergence and   is the laplacien 

operator,   . Ω is a bounded and connected 

domain of   with a Lipchitz continuous boundary 

  where   denote the outward pointing normal to 

the boundary, and  

   .    is a function defined and bounded on 

𝜞 verify:  

 almost everywhere.      (4)   

We define the spaces: 

                (5) 

                                                         (6)               

 .                           

                   (7) 

A mixed finite element approximation of the Stokes equations with the 

boundary condition of type (D+N)  
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Then the standard weak formulation of the Stokes flow 

problem (1)-(2)-(3) is the following: 

 

                                                                                                                (8) 

 Let the bilinear forms   and 

 

               (9)         

 .                                          (10) 

Given the functional , 

 .                               (11) 

 The underlying weak formulation   (8) may be restated as                            

   (12) 

III. THE EXISTENCE AND UNIQUENESS OF THE 

SOLUTION 
   In this section we will show that the problem (12) 

has exactly one solution .  

It suffices to verify that the bilinear form  is positive, 

continuous and  and the bilinear form  

is continuous and satisfies the inf-sup condition (see 

theorem 6.8 . 

Theorem 3.1.  is a real Hilbert space, with norm 

denoted by  , for the scalar product:                                                      

                     (13)                                                         

 .                 (14)                               

To prove this theorem we need the following lemma. 

Lemma 3.2. There are two strictly positive constants  and 

 such that: 

                                     

 .       (15)                           

Proof. The mapping  is continuous 

(see the theorem 1.2 in ), then there exists 

  

  

 We have also:    

then 

   

with  

      On the other hand, there exists a constant  

 

 

 

 i.e. 

 

 We have also:    

Then,  with  

. 

Proof of theorem 3.1. Ω is a bounded and connected 

domain of then it is easy to verify that is a scalar 

product, i.e.  is an Euclidean space. 

 We have  is a real Hilbert, then it is 

complete. By the lemma 3.2,   and  are two 

equivalents norms, then  is complete, 

therefore it is a real Hilbert space. 

Theorem 3.3.  is continuous. 

      is   for the norm   , i.e. 

there exists a constant  

  .                (16)  

Proof.   is a scalar product, by Cauchy-Schwarz 

inequality we have    
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                                    (17) 

 with  

ii) Let   using (4) then gives: 

  

With  

Theorem 3.4.  

                         b is satisfies the inf-sup: There exists a 

constant  such that 

 

        (18)                                    

  To prove this theorem we need the following lemmas: 

Lemma 3.5.  

       

   :     

                                    
is continuous linear mapping and . 

 

Proof. It is clear that    is a linear mapping. Remains to 

chow that it is continuous and  

. 

 We have:  for all 

  is continuous 

      Let , then  .  

We set   

then , 

with  is the area of Ω.  

Since  is the range space of the linear mapping   :  

 (see lemma 6.8 in ), then there exists 

 such that  

 Let  for all  we have 

  where . 

 

 Lemma 3.6. There exists a constant  such that: for 

all  there exists  such that  

and  

 

Proof. By the lemma 3.5, ,  then  is 

closed in , therefore there exists  such that , 

for all  there exists  such that 

  and (see the lemma A.3 [1]). 

  

Proof of theoreom 3.4. i) Let  

we have  

 
Then b is continuous. 

ii) Let , by lemma 3.6, there exists 

 such that  and 

  Then 

 
    

    We define the “big” symmetric bilinear form  

    (19)                               

And the corresponding function   

choosing the successive test vectors  and  

shows that the stokes problem (12) can be rewritten in the 

form:                      

   

                                        

 (20) 

The bilinear form is positive continuous and  

 and the bilinear form  is continuous 

and satisfies the inf-sup condition. Then the problem (12) is 

well-posed and the „‟B-stability bound‟‟ [1], given below:  

 

 Proposition 3.7.   , we 

have that:                                

(21) 

where  

The bilinear form a is symmetric, and continuous 

and semi positive definite on , in  this case  we say 

the problem (12) is a type of saddle-point problem. 

The theorem (3.3) and (3.4) ensure the existence and 

uniqueness of the solution of the problem (12) (see the 

theorem 6. 2 in [1]). In the following section we will solve 

this problem by mixed finite element method.  

IV. MIXED FINITE ELEMENT APPROXIMATION 
A discrete weak formulation is defined using finite dimensional 

spaces   and . 

The discrete version of (12) is:  
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     (22)                                         

      

We use a set of vector-valued basis functions  , 

so that  

                                                  (23)                              
We introduce a set of pressure basis functions 

  and set   

                                                  (24)       

Where  and  are the numbers of velocity and pressure 

basis functions, respectively. 

We find that the discrete formulation (22) can be expressed 

as a system of linear equations  

                                                                          

                                                 (25)             

  With     

d     (26)                                        

                             (27)   

for   

The right-hand side vectors in (4.4) are 

                    (28)                                    

 for  

and the function pair  obtained by substituting the 

solution vectors  and  into (23) and (24) 

is the mixed finite element solution. The system (25)-(28) is 

henceforth referred to as the discrete stokes problem. 

We use the iterative methods Minimum Residual Method 

(MINRES) for solving the symmetric system. 

V. A RESIDUAL ERROR ESTIMATOR 

In this section we assume that  and  are the 

polynomials.  

 

Let  be a family of rectangulations of Ω. For 

any T ,  is of rectangles sharing at least one edge 

with element T,  is the set of rectangles sharing at least 

one vertex with T. Also, for an element edge E,  denotes 

the union of rectangles sharing E, while   is the set of 

rectangles sharing at least one vertex whit E. 

 

Next, 𝜕T is the set of the four edges of T we denote 

by ) and  the set of its edges and vertices, 

respectively. 

 

We let    = denotes the set of all 

edges split into interior and boundary edges. 

 

                         , 

    where                , 

                          =   . 

The bubble functions on the reference element  

  are defined as follows:  

 

 

 

 

 

 
 

Here  is the reference element bubble function, and  

,   are reference edge bubble functions. For any 

T  , the element bubble functions is  and 

the element edge bubble function is =   where 

 the affine map form  

For an interior edge E  ,  is defined piecewise, so 

that ,  , where     

   .  For a boundary edge  , 

 , where T is the rectangle such that   

With these bubble functions, ceruse et al ([19], lemma 4.1] 

established the following lemma. 

 

Lemma 5.1. Let T be an arbitrary rectangle in 

 . 

For any , the following 

inequalities hold.     

              
(29) 

                                        (30)                 

                                                                      

                  (31)              

                                         (32)          

                                                                      

 ,                                       (33)            

where  and  are tow constants which only 

depend on the element aspect ratio and the polynomial 

degrees  and . 

Here,  and  are fixed and  and  can be 

associated with generic constants  In addition,  
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which is only defined on the edge E also denotes its natural 

extension to the element T. 

From the inequalities (32) and (33) we established 

the following lemma: 

 

Lemma 5.2.  Let T be an rectangle  

For any   the following inequalities hold. 

                                                      

             (34)             

 

Proof. Since  in the other three edges of 

rectangle T, it can be extended to the whole of Ω by setting 

  in Ω\  then 

 

 

Using the inequalities (32), (33) and the lemma (3.2) gives 

  

 

 
    

   

 
 

                          , , 

where  is the diameter of Ω and . 

We recall some quasi-interpolation estimates in the 

following lemma. 

 

Lemma 5.3. Clement interpolation estimate: 

Given , let  be the quasi-interpolant of   

defined by averaging as in [20]. 

For any T  ,  ,                (35)                            

and for all E    .             (36)                                                    

 

We let (  denote the solution of (12) and let 

(  denote the solution of (22) with an approximation 

on a rectangular subdivision . 

Our aim is to estimate the velocity and the pressure 

errors  .  

The element contribution  of the residual error 

estimator  is given by  

 

                                           .                             

                      (37) 

and the components in (37) are given by 

                                          (38)                           

                                                               (39)              

                                          

                     (40)          

With the key contribution coming from the stress 

jump associated with an edge E adjoining elements T and S:      

                                      

 
 

The global residual error estimator is given by:  

 . 

 

For any T   and  we define the following two 

functions: 

 

   can be extended to the whole of 

Ω by setting  in Ω\T. 

-  

- in the other three edges 

of rectangle T. 

 

With these two functions we have the following lemmas: 

  

Lemma 5.4. for any T  we have:  

             (41)             
Proof.  
 

 

Since   in Ω and   in Ω\T  

 

then: 

. 

. 
 

Lemma 5.5.     

 .               (42)       

 

 

              (43) 
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Proof.    The same proof of (41). 

                  

 

                                                                 

  Since   on Ω  and 

 

 

                                           . 

 

Theorem 5.6. For any mixed finite element approximation 

(not necessarily inf-sup stable) defined on rectangular 

grids , the residual estimator   satisfies: 

 . 

 
Note that the constant C in the local lower bound is 

independent of the domain, and 

 . 

Proof.  We include this for completeness. To establish the 

upper bound we let 

 and  be the clement 

interpolant of , then 

 
Thus,    

 

 
Then 

 
 

Using lemma 5.3 then gives: 

 

                             
 

Finally, using the proposition 3.7 gives: 

 
This establishes the upper bound. 

  

Turning to the local lower bound. First, for the 

element residual part, we have: 

 

                       
                         . 

 

Using (41) and (30), gives:  

  

                                                                                

 

 

 . 

 

In addition, from the inverse inequality (29), 

 
Thus,  

  

                                             (44) 

 

Next comes the divergence part,  

           
                  

                                  (45) 
   

  Finally, we need to estimate the jump term. For an edge 

we have   
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Using  (42) gives: 

 

                               

                     

      
                    . 

                     
Using (32) and (33) gives, 

 

                                  
Using (44) gives, 

                (46) 
Using (31) gives, 

, and thus 

using (46) gives, 

                      (47) 

 We also need to show that (47) holds for boundary edges. 

For an , we have 

 

              

                         
              . 

Using (43) and (31), gives 

 
   

                         

               

                .   

 

Using (44) and (34), we obtain  

               (48)  
 

Using (31) 

 

and thus using (48) gives, 

                          (49)  

 

Finally, combining (44), (45), (47) and (49) establishes the 

local lower bound. 

 

Remark 5.7. Theorem 5.6 also holds for stable (and 

unstable) mixed approximations defined on a triangular 

subdivision if we take the obvious interpretation of . The 

Proof is identical except for the need to define appropriate 

element and edge bubble functions. 

VI. FIGURES AND TABLES 
In this section some numerical results of 

calculations with mixed finite element Method and ADINA 

System will be presented. Using our solver, we run the test 

problem driven cavity flow [14, 16] with a number of 

different model parameters. 

 

Example. Square domain, enclosed flow boundary 

condition. 

This is a classic test problem used in fluid dynamics, known 

as driven-cavity flow. It is a model of the flow in a square 

cavity with the lid moving from left to right. Let the 

computational model: 

 (y = 1; -1x1  ux=1-x
2
), a regularized cavity. With these 

data, see that the (D+N) condition is satisfied, just take  a 

real number very large and  on 

(y = 1; -1x1) and  on the other three 

boundary of the square domain.  

The streamlines are computed from the velocity solution by 

solving the Poisson equation numerically subject to a zero 

Dirichlet boundary condition. 

 

 
Fig.1. Uniform streamline plot by MFE (left) associated 

with a 64-64 square grid, Q1-P0 approximation, and uniform 

streamline plot (right) computed with ADINA system. 
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Fig.2. Velocity vectors solution by MFE (left) associated 

with a 64-64 square grid, Q1-P0 approximation and velocity 

vectors solution (right) computed with ADINA system. 

 

Fig.3. The velocity component u at vertical center line (a), 

and the velocity component v at horizontal center line (b) 

with a 129 × 129 grid. 

Figure 3 shows the velocity profiles for lines 

passing through the geometric center of the cavity. 

These features clearly demonstrate the high accuracy 

achieved by the proposed mixed finite element method for 

solving the Stokes equations in the lid-driven squared 

cavity. 

 

Fig.4. Pressure plot for the flow with a 64-64 square grid. 

 

VII. CONCLUSION 
In this work, we were interested in the numerical solution of 

the partial differential equations by simulating the flow of 

an incompressible fluid. We introduced the Stokes 

equations with a boundary condition of type (D+N). 

The weak formulation obtained is a problem of saddle point 

type. We have shown the existence and uniqueness of the 

solution of this problem. We used the discretization by 

mixed finite element method with a posteriori error 

estimation of the computed solutions. For the test of driven-

cavity flow, the particles in the body of the fluid move in a 

circular trajectory. 

Our results agree with Adina system. 

Numerical results are presented to see the performance of 

the method, and seem to be interesting by comparing them 

with other recent results. 
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