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ABSTRACT 

Ultrasonography is considered to be one of the most 

powerful techniques for imaging organs and soft tissue 

structures in human body. It is preferred over other 

medical imaging methods because it is non-invasive, 

portable, and versatile and does not use ionising radiations. 

Despite their obvious advantages, ultrasound (US) images 

are contaminated with multiplicative noise called „speckle‟ 

which is one of the major sources of image quality 

degradation. In the medical literature, speckle has been 

treated as a distracting artifact as it tends to degrade the 

resolution and the object detectability. Image denoising is 

used to remove the noise while retaining as much as 

possible the important signal features. The purpose of 

image denoising is to estimate the original image form the 

noisy data. Image denoising is still remains the challenge 

for researchers because noise removal introduces artifacts 

and causes blurring of the images.  

 

Keywords: Speckle noise, Denoising, Simulation, 

Blurred, Speckle reduction. 

 

1. INTRODUCTION 
 

1.1 Ultrasound Images 

Ultrasonography is considered to be one of the most 

powerful techniques for imaging organs and soft tissue 

structures in human body. 

 

Despite their obvious advantages, ultrasound(US) 

images are contaminated with multiplicative noise called 

„speckle‟ which is one of the major sources of image 

quality degradation. 

 

In the medical literature, speckle has been treated 

as a distracting artifact as it tends to     degrade the 

resolution and the object detectability. Moreover, in US 

images the speckle noise has a spatial correlation length on 

each axis, which is same as resolution cell size. This 

spatial correlation makes the speckle suppression a very 

difficult and delicate task, hence, a trade-off has to be 

made between the degree of speckle suppression and 

feature preservation. 

 

1.2 Speckle Noise 

Speckle significantly degrades the image quality and 

hence, makes it more difficult for the observer to 

discriminate fine detail of the images in diagnostic  

 

 

examinations. Speckle is a form of multiplicative noise, 

which makes visual interpretation difficult. Laser 

holography and ultrasound imaging are two techniques 

susceptive to speckle degradation. Speckle noise causing 

greater degradation within bright areas of an image than in 

dark areas. 

  

1.3 Image Denoising 

Image denoising is used to remove the noise while 

retaining as much as possible the important signal features. 

The purpose of image denoising is to estimate the original 

image form the noisy data. Image denoising is still remains 

the challenge for researchers because noise removal 

introduces artifacts and causes blurring of the images.  

 

2. LITERATURE SURVEY 
A new multiscale non-linear method for speckle 

suppression in ultrasound images is presented. The main 

innovation is the use of realistic distributions of the 

wavelet coefficients. By combining these distributions 

with a simple shrinkage function (soft-thresholding), a 

closed-form expression for soft thresholding is derived 

analytically. [1]  

 

A new and efficient technique for despeckling medical US 

images has been proposed, which relies on the Rayleigh 

distribution of speckle noise and Gaussian prior for 

modelling the wavelet coefficients in a logarithmically 

transformed US image. [2] 

 

????.....This work describes the implementation, testing 

and evaluation of popular denoising algorithms for the 

denoising of low-field MR images. [3] 

 

For Medical field denoising, an image prior model was 

purposed using Markov Random Field. The parameters on 

the model are learned from PCA and MLE. Based on this 

model, image denoising can be done by Bayesian analysis. 

[4] 

 

A simple and subband adaptive threshold is proposed to 

address the issue of image recovery from its noisy 

counterpart. It is based on the generalized Guassian 

distribution modeling of subband coefficients. The image 

denoising algorithm uses soft thresholding to provide 

smoothness and better edge preservation at the same time. 

[5]   

Analysis of Various Parameters of Filters (Wavelets) with Curvelet 

Transform for Denoising in Ultrasound Images 
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A strategy for digitally implement both the ridgelet and the 

curvelet transforms. Curvelet thresholding rivals 

sophisticated techniques that have been the object of 

extensive development over the last decade. [6] 

 

Curvelets provide a powerful tool for representing very 

general linear symmetric systems of hyperbolic differential 

equations. [7] 

 

A novel implementation of the discrete curvelet transform 

is proposed in this work. The transform is based on the 

Fast Fourier Transform (FFT) and has the same order of 

complexity as the FFT. The discrete curvelet functions are 

defined by a parameterized family of smooth windowed 

functions that are 2-pi periodic and form a partition of 

unity. The transform is named the Uniform Discrete 

Curvelet Transform (UDCT) because the centers of the 

curvelet functions at each resolution are located on a 

uniform grid. [8] 

 

?????...A new approach for SAR image enhancement and 

change detection based on the curvelet transform has been 

proposed and applied to TerraSAR-X data of the city 

center of Munich. [9] 

 

An adaptive threshold estimation method for image 

denoising in the curvelet domain by using mean, (Spatial 

Frequency Measure) SFM and (Difference Operator )DOP, 

experiment work on Lena, cameraman and boat gray test 

images at different type of noises (Random, Salt & pepper 

,Gaussian ,Speckle) showed that the proposed adaptive 

threshold method success to estimate and reduce noise 

from image and it is more effective at reduce noise from 

image than (Rudin-Osher-Fatemi) ROF filter and Non 

Local Mean algorithm. The proposed adaptive estimation 

method introduced betterresults than (Rudin-Osher-

Fatemi) ROF filter, Non Local Mean algorithm and 

Wiener filter at reduce noise (Random, Salt & pepper, 

Gaussian) according to increasing of PSNR values of 

enhanced images by 0.044 at Random, 1.05 at salt 

&pepper and 0.457 at Gaussian noise. [10] 

 

3. TECHNIQUES FOR DENOISING 
  

3.1 Curvelet Transform Techniques 

Curvelet Transform is a new multi-scale representation 

most suitable for objects with curves. Developed by 

Candès and Donoho (1999).  

 

A discontinuity point affects all the Fourier coefficients in 

the domain. Hence the FT doesn‟t handle point‟s 

discontinuities well. Using wavelets, it affects only a 

limited number of coefficients. Hence the WT handles 

point discontinuities well. Discontinuities across a simple 

curve affect all the wavelets coefficients on the curve. 

Hence the WT doesn‟t handle curves discontinuities well. 

Curvelets are designed to handle curves using only a small 

number of coefficients. Hence the CvT handles curve 

discontinuities well. 

 

The Curvelet Transform includes four stages: 

 Sub-band decomposition 

 Smooth partitioning 

 Renormalization 

 Ridgelet analysis 

       

3.1.1 Algorithm 

1. Sub-band decomposition 

 

 

 Dividing the image into resolution layers. 

 Each layer contains details of different frequencies: 

o P0 – Low-pass filter. 

o 1, 2, … – Band-pass (high-pass) filters. 

 The original image can be reconstructed from the sub-

bands: 

 

 

 

Energy preservation 

 

 

 Low-pass filter 0 deals with low frequencies near 

||1. 

 Band-pass filters 2s deals with frequencies near 

domain ||[2
2s

, 2
2s+2

]. 

 Recursive construction – 2s(x) = 2
4s
 (2

2s
x). 

 The sub-band decomposition is simply applying a 

convolution operator: 

 

 

 The sub-band decomposition can be approximated 

using the well known wavelet transform: 

o Using wavelet transform, f is decomposed into S0, D1, 

D2, D3, etc. 

o P0f is partially constructed from S0 and D1, and may 

include also D2 and D3. 

o s f is constructed from D2s and D2s+1. 

 

2. Smooth partitioning 

 A grid of dyadic squares is defined: 

 

 

 Qs – All the dyadic squares of the grid. 

 Let w be a smooth windowing function with „main‟ 

support of size 2
-s
2

-s
. 

 For each square, wQ is a displacement of w localized 

near Q. 

 Multiplying s f with wQ (QQs) produces a smooth 

dissection of the function into „squares‟. 

 

 The windowing function w is a nonnegative smooth 

function. 
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 Partition of the energy: 

o The energy of certain pixel (x1, x2) is divided between 

all sampling windows of the grid. 

 

 

 Reconstruction: 

 

 

 

 Parserval relation:  

 

 

 

 

 

3. Renormalization 

 Renormalization is centering each dyadic square 

to the unit square  

[0, 1]  [0, 1]. 

 For each Q, the operator TQ is defined as: 

 

 

 Each square is renormalized 

 

 

 

4. Ridgelet analysis 

A) Before ridgelet transform:  

 

 The s f layer contains objects with frequencies near 

domain ||[2
2s

, 2
2s+2

].  

o We expect to find ridges with width  2
-2s

. 

 Windowing creates ridges of width  2
-2s

 and length  

2
-s
.  

 The renormalized ridge has an aspect ratio of width  

length
2
. 

 We would like to encode those ridges efficiently  

o Using the Ridgelet Transform 

 Ridgelet are an orthonormal set {} for L
2
(

2
) 

 Divides the frequency domain to dyadic coronae  

||[2
s
, 2

s+1
]. 

 In the angular direction, samples the s-the corona at 

least 2
s
 times. 

 In the radial direction, samples using local wavelets. 

 The ridgelet element has a formula in the frequency 

domain: 

 

where, 

 

 

  

 

 i,l are periodic wavelets for [-,  ).  

 i is the angular scale and l[0, 2
i-1

–1] is the angular 

location. 

 j,k are Meyer wavelets for . 

 j is the ridgelet scale and k is the ridgelet location.  

Ridgelet transform: 

 Each normalized square is analyzed in the ridgelet 

system: 

 

 

o The ridge fragment has an aspect ratio  

of 2
-2s
2

-s
.  

o After the renormalization, it has localized frequency in 

band ||[2
s
, 2

s+1
]. 

o A ridge fragment needs only a very few ridgelet 

coefficients to represent it.  

 

3.2 Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) is introduced to 

overcome the redundancy problem of CWT. The approach 

is to scale and translate the wavelets in discrete steps. 

                                 

         (3.1) 

Where     is the scaling factor    is the translating 

factor, k and j are just integers. 

Subsequently, we can represent the mother wavelet in term 

of scaling and translation of a dyadic transform as 

 

                  (3.2) 

 

Replacing eqn, the coefficients of DWT can be represented 

as 

                              

                (3.3) 

 

By applying DWT, the image is actually divided i.e., 

decomposed into four sub-bands and critically sub sampled 

as shown in fig 3.1(1): 
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HL2 HH2 
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HH1 

 

       HL1 
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         (a) One-Level                    (b) Two-Level 

      

Fig 3.1(1): Image Decomposition 

 

3.3 Denoise Procedure  

Wavelets are especially well suited for studying non-

stationary signals and the most successful applications of 

wavelets have been in compression, detection and 

denoising. In recent years, there has been a fair amount of 

research on wavelet based image denoising. The algorithm 

is simple but provides good results for a wide variety of 

signals. The method consists of applying the DWT to the 

original data, thresholding the detailed wavelet coefficients 

and inverse transforming the set of thresholded coefficients 
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to obtain the denoised signal. This scheme is known as 

Visu-Shrink and is further illustrating in the block diagram 

of Figure 3.2. 

 

 
 

Figure 3.2: Block diagram for DWT based denoising 

framework 

 

3.4 Image Denoising Filter Methods 

 

The various filter methods for image denoising: 

 

1) Median Filter 

2) Wiener filter 

 

Median Filter:  

This filter sorts the surrounding pixels value in the window 

to an orderly set and replaces the center pixel within the 

define window with the middle value in the set. 

 

 
 

Wiener Filter:  

Wiener2 low pass-filters an intensity image that has been 

degraded by constant power additive noise. Wiener2 uses a 

pixel wise adaptive Wiener method based on statistics 

estimated from a local neighborhood of each pixel. 

J = wiener2 (I, [m n], noise) filters the image I using pixel 

wise adaptive Wiener filtering, using neighborhoods of 

size m-by-n to estimate the local image mean and standard 

deviation. If you omit the [m n] argument, m and n default 

to 3. The additive noise (Gaussian white noise) power is 

assumed to be noise.  

 

[J, noise] = wiener2 (I, [m n]) also estimates the additive 

noise power before doing the filtering. Wiener2 returns 

this estimate in noise. 

 

3.5 Discrete Algorithm 

In this work, the algorithm via the wavelet shrinkage 

technique is as follows: 

 

1. Take a given original image. 

2. Take the logarithmic transform of speckled image. 

 

I. Perform multiscale decomposition of the log 

transformed image using wavelet transform. 

II. Estimate the noise variance d using the below 

formula[2] 

 

III. For each level in sub bands, compute the scale 

parameter K using the below formula.[2] 

 
IV. For each subband (except the lowpass 

residual).Compute the standard deviation ox 

using the below formula.[2] 

 
V. Compute threshold TN using below formula[2] 

 

 
if‟ subband variance U: is greater than noise 

variance, otherwise set TN to maximum 

coefficient of the sub band. 

VI. Apply soft thresholding to the noisy coefficients. 

VII. Invert the multiscale decomposition to reconstruct 

the denoised image f ; 

VIII. Take the exponential of the „reconstructed image 

obtained from step 9[2]. 

 

 

4. PARAMETER METRICS 
4.1 PSNR 

A high quality image has small value of Peak Signal to 

Noise Ratio (PSNR). 

 

 PSNR is defined as follow: 

 
2. Coefficient of Correlation (CoC) 

 

 CoC=         

Where       is mean of original image,      is mean of 

denoised image. 
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5. PERFORMANCE ANALYSIS 
 

       
a) Original image         b) Noisy image 

 

 
c) Decomposed structure 

 

 

 
d) Wiener filter image 

 

 

 
e) Median Filter image 

 

 

 
f) Curvelet transform image 

 

Fig 5.1(1) Images after applying filters ad curvelet 

transform techniques for denoising. 

 

 

 

 

Table 5.1(1) PSNR results test for discrete wavelet 

transform (filters) and Curvelet transform on 

ultrasound image and σ value (1) Curvelet transform 

(2) wiener filter (3) media filter 

 

Image Curvelet 

transform 

Wiener 

filter 

Median 

filter 

σ= 0.5 11.6920 21.8049 23.5206 

σ= 1.0 11.4968 19.7270 20.7281 

σ =1.5 12.1962 18.6646 19.2271 

σ= 2.0 12.1746 18.0021 18.2348 

σ =2.5 15.3100 17.5245 17.5294 

 

 

Table 5.2(2) Coc results test for discrete wavelet 

transform (filters) and Curvelet transform on 

ultrasound image and σ value (1) Curvelet transform 

(2) wiener filter  (3) media filter 

 

Image Curvelet 

transform 

Wiener 

filter 

Median 

filter 

σ= 0.5 0.5485 0.8539 0.8950 

σ= 1.0 0.5478 0.8082 0.8297 

σ =1.5 0.5869 0.7848 0.7852 

σ= 2.0 0.5849 0.7732 0.7541 

σ =2.5 0.7425 0.7632 0.7326 

 

6. CONCLUSION 
In comparison of different filtering methods and curvelet 

transform method, a novel multiscale nonlinear method for 

speckle suppression in ultrasound images is presented. 

Experiments are conducted to access the better 

performance from denoising filtering methods. The result 

showed in table 5.1(1) and 5.2(2) shows that Filtering 

Methods of discrete wavelets transform produce better 

result than curvelet transform methods. Wavelet based 

denoising algorithms uses soft thresholding to provide 

smoothness and better edge preservation. Wiener filter 

removes noise significantly and outperforms the median 

filter. Despite the significance of Curvelet transform 

having discontinuities working over arc the wiener filter 

display images with more clarity.  

 

 

 

 



International Journal of Modern Engineering Research (IJMER) 

   www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-490-495                ISSN: 2249-6645 

        www.ijmer.com 495 | P a g e  

REFERENCES 
[1] Savita Gupta, L.Kaur, R.C. Chauhan and      

S.C.Saxena, „A wavelet based Statistical Approach for 

Speckle Reduction in Medical Ultrasound Images‟, 

MBEC Med. Biol, Eng. Comput., March 2004, Vol42, 

and 189-192.   

 

[2] Lakhwinder Kaur, Savita Gupta and R.C.Chauhan, 

„Image denoising using Wavelet Thresholding‟. 

 

[3] Ting-Li Chen,‟A Markov Random Field Model for 

Medical Image Denoising‟, 978-1-4244-4134-

1/09/$25.00 ©2009 IEEE. 

 

[4] NF Ishak, MJ Gangeh, R Logeswaran “Comparison of 

Denoising Techniques Applied on    Low-field MR 

Brain Images”, in 2008. 

 

[5] Jean-Luc Starck, Emmanuel J. Candµes, David L. 

Donoho “The Curvelet Transform for Image 

Denoising”, in November 15, 2000. 

 

[6] Emmanuel J. Candµes and Laurent Demanet 

“Curvelets and Wave Equations”, in september 11, 

2004. 

 

[7] T.T. Nguyen (Ecole des Mines de Paris) & H. 

Chauris* (Ecole des Mines de Paris) “Uniform 

Discrete Curvelet Transform for Seismic Processing”, 

in 2008. 

 

[8] Andreas Schmitt, Birgit Wessel, Achim Roth 

“CURVELET APPROACH FOR SAR IMAGE 

DENOISING, STRUCTURE ENHANCEMENT, 

AND CHANGE DETECTION” in September 2009. 

 

[9] Aliaa A.A., Youssif A.A.Darwish, A.M.M.Madbouly 

“Adaptive Algorithm for  Image Denoising Based on 

Curvelet Threshold”, in January 2010 

 

 


