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Abstract 

 Interpolation by various types of splines is the standard procedure in many applications. In this paper shall discuss the 

function, two and fourth derivatives of spline interpolation as an alternative to polynomial spline interpolation at the all intervals. 

The method is appropriate and solving of initial and boundary value problems, the results revealing that method is very effective 

and accurate.   
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1. Introduction. 

We consider the following initial and boundary values problem: 
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With the help of lacunary spline functions of type (0, 2, 4) see Faraidun (2010) [2], by using that )]1,0([ 21 RCf n  
, 

2n and that it satisfies the Lipschitz continuous 
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Also boundary value problems are satisfied, and for all ]1,0[x  and for all real 2121 ,,, yyyy  . These conditions ensure the 

existence of unique solution of the problem (1). 

  

In [2] authors investigated the model (0, 2, 4) approximation by polynomial splines on box partitions in all intervals. The main 

computational advantage of this technique is its simple applicability for solving boundary value problems. We develop a new 

spline approximation method for solving the boundary value problems over the interval [a, b]. 

 

 In section 2, we give a brief description of the method. The derivation of the difference schemes spline function has been 

given in Section 3, and also, we have shown the second-order accuracy method and convergence analysis are studied. We have 

solved two numerical examples to demonstrate the applicability of the methods in section 4. In the last section, the discussion 

on the results is given in Section 5. 

 
2. Construct of approximate values:    
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 Now from these approximate values we construct a spline function )(xS   wich interpolates to the set Y on the mesh   

and approximate the solution y(x) of equation (1) as [4, 5]. The set 
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Y  is defined as: 
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 Using these approximate values 
)(q

kY )....,,2,1,0.,4,2,0( mkq   and  
''

0 , myy  on the bases of  [2, 3], we 

construct the lacunary spline function )(xS  of the type      (0, 2, 4) ( )()( xSxS k  if 1 kk xxx )  and denote by 
5

6,nS  

the class of six degree splines )(xS  as the following: 
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Where 4,2q and mk ....,,2,1,0 , the existence and uniqueness of the above spline function have been shown in [2],  
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Let us examine now intervals ],[ 1ii xx , i=1,2,…, n-2., Defined )(xSi  as: 
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Similarly for the last interval ],[ 1nn xx , we can define approximate values of )(xS n . 
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3. Convergence of a spline functions to a solution:    

A key ingredient in the development of our estimates is the following theorem which gives a bound on the 

size of a polynomial on a spline function )(xS   in terms of its values on a discrete subset which is 

scattered in the values of ky ( mk ....,,2,1,0 ) of a problem (1). 

 

Theorem 1: Let )...,2,1,0;4,2,0()( mkqy q

k   be the approximate values defined above. Then the 

following estimates of spline function )(xS are valid:    
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Proof: (i) From theorem 1 of [1] and equation (3), we have 
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where 6542 9015 CCCI   and 654 and, CCC   are constants dependent of h. 
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where 9873 360607 CCCI   and 987 and, CCC   are constants dependent of h. 

And hence  
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Where 321 IIII  , dependent of h. 

By taking the first derivative of equation (5), we have 
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and by successive differentiations obtain 
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Proof of theorem 1 (ii): 
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Theorem 2: If the function f in Cauchy's problem (1) satisfies conditions (2) and (3), then the following inequalities 

are hold: 
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Similarly for each the intervals can be proving it.  
4. Numerical results: 

      In this section, the method discussed in section 2 and 3 were tested on two problems, and the absolute 

errors in the analytical solution were calculated. Our results confirm the theoretical analysis of the methods 

with the initial and boundary value problems. For different starting points observed same convergence 

point with or less iterations, see [7]. 

 

Problem (1): we consider that the second order boundary value problem 0 yy where ]1,0[x  and 

1)0(,1)0(  yy .  

Problem (2): Let )cos(2 xyy   where 2)1(,2)0(,3)0(  yyy . 

 It turns out that the six degree spline which presented in this paper, yield approximate solution that is 

O(h
6
) as stated in Theorem 1. The results are shown in the Table 1 and Table 2 for different step sizes h. 

 

Table 1  Absolute maximum error for the derivatives )(xS . 

h 


 )()( xyxs  


 )()( xyxs  


 )()( )5()5( xyxs  


 )()( )6()6( xyxs  

0.1 101067.67   71006.26   41073   21033.11   

0.01 161071.64   111041.22   61005.72   3101.11   

0.001 141004.44   7102.22   01064.26   3102.53   

 

Table 2  Absolute maximum error for the derivatives )(xS . 

h 


 )()( xyxs  


 )()( xyxs  


 )()( )5()5( xyxs  


 )()( )6()6( xyxs  

0.1 81069   51032.25   21033.50   110005.82   

0.01 131062.72   81038.25   3104.53   11001.87   

0.001 181061.66   11102.22   3105   11079   
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5. Conclusion: 
 An efficient and accurate numerical scheme based on the Interpolation method proposed for solving initial and boundary 

value problems. The Lacunary interpolation method was employed to reduce the problem to the solution of differential 

equations. Illustrative examples are presented in Table 1 and 2, were given to demonstrate the validity and applicability of the 

method with the less errors bounded.   
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