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ABSTRACT 

In this paper, the generalized 

'

G

G

 
 
 
 

-expansion 

method is used for construct an innovative explicit 

traveling wave solutions involving parameters of the 

generalized combined KdV and  mKdV equation 

       2  = 0t x x x xxxu a t u b t u u c t u u e t u    , for 

any arbitrary functions       , ,a t b t c t  and  e t . 

The properties of this method is that gives an explicit 

solutions other than the other methods and also gives 

especial solutions. 

 

Keywords - Combined KdV and  mKdV equation, 

Generalized 

'

G

G

 
 
 
 

- expansion method, Traveling wave 

solutions. 

I. INTRODUCTION 
Phenomena in physics and other fields are often described 

by nonlinear evolution equations (NLEEs).When we want 

to understand the physical mechanism of phenomena in 

nature, described by nonlinear evolution equations, exact 

solutions for the nonlinear evolution equations have to be 

explored. For example, the wave phenomena observed in 

fluid dynamics [1,2], plasma and elastic media [3,4] and 

optical fibers [5,6], etc. In the past several decades, many 

effective methods for obtaining exact solutions of NLEEs 

have been proposed, such as Hirota's bilinear method [7], 

Backlund transformation [8], Painlevé expansion [9], sine--

cosine method [10], homogeneous balance method [11], 

homotopy perturbation method [12--14], variational 

iteration method [15--18], asymptotic methods [19], non-

perturbative methods [20], Adomian decomposition method 

[21], tanh-function method [22- 26], algebraic method [27- 

30], Jacobi elliptic function expansion method [31- 33], F-

expansion method [34--36] and auxiliary equation method 

[37- 40]. Recently, Wang et al. [41] introduced a new direct 

method called the 

'

G

G

 
 
 
 

-expansion method to look for 

travelling wave solutions of NLEEs. Nofal et al. [45] used 

the improved 

'

G

G

 
 
 
 

- expansion method for construct 

explicit the traveling wave solution involving parameters of 

the fifth- order KdV equation.  Hamed et al. [46] introduced 

the improved 

'

G

G

 
 
 
 

- expansion method for construct 

explicit the traveling wave solutions involving parameters 

of the  3 1  dimensional Potential equation. Elagan et 

al. [47] used the generalized 

'

G

G

 
 
 
 

- expansion method for 

construct an innovative explicit traveling wave solutions 

involving parameters of the Fitz Hugh-Nagumo equation.  

Hamed et al. [48] used the generalized 

'

G

G

 
 
 
 

-expansion 

method for construct an innovative explicit traveling wave 

solution involving parameter of the generalized combined 

KdV and mKdV equation. 

Consider the generalized combined KdV and mKdV 

equation  

       2  = 0,t x x x xxxu a t u b t u u c t u u e t u     

                                                                           (1.1) 

where      , , a t b t c t  and  e t  are functions of .t  

Eq. (1.1) where ( ) = 0a t and       , ,b t c t e t  are  

constants has been widely used in many physical fields 

such as plasma physics, fluid physics,solid-state physics 

A novel traveling wave solution for the generalized combined KdV 

and mKdV equation using the generalized 
'

G

G

 
 
 
 

-expansion method 
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and quantum field theory. When  ( ) = = 0a t c t , and 

    , b t e t  are constants Eq. (1.1) becomes KdV 

equation. When  ( ) = = 0a t b t , and     , c t e t  are 

constants Eq. (1.1) is mKdV equation. KdV equation and 

mKdV equation had been studied by many authors. 

Recently,  Zhang [42] obtained some exact solutions of   

Eq. (1.1) where ( ) = 0,a t and       , ,b t c t e t   are 

constants by tanh function method and the direct method. 

Recently Eq. (1.1) has solved by Zhenya [43] using a 

generalized approch based on Riccati equation when and 

      ( ), , ,a t b t c t e t   are all constants. In this paper 

we try to solve Eq.(1.1) using generalized 

'

G

G

 
 
 
 

-

expansion method when      , , a t b t c t  and  e t  are 

functions of .t  The 

'

G

G

 
 
 
 

- expansion method is based on 

the assumptions that the travelling wave solutions can be 

expressed by a polynomial in

'

G

G

 
 
 
 

, and that  =G G   

satisfies a second order linear ordinary differential equation 

(LODE):   

= 0, G G G    where

   2

2
= , = , =

dG d G
G G x Vt

d d
  

 


 
, V  is a 

constant. The degree of the polynomial can be determined 

by considering the homogeneous balance between the 

highest order derivative and nonlinear terms appearing in 

the given NLEE. The coefficients of the polynomial can be 

obtained by solving a set of algebraic equations resulted 

from the process of using the method. By using the

'

G

G

 
 
 
 

-

expansion method, Wang et al. [41] successfully obtained 

more travelling wave solutions of four NLEEs. Very 

recently, Zhang et al. [44] proposed a generalized 

'

G

G

 
 
 
 

-

expansion method to improve the work made in [41].             

The main purpose of this paper is to use generalized 

'

G

G

 
 
 
 

-expansion method to solve the generalized 

FitzHugh-Nagumo equation. The performance of this 

method is reliable, simple and gives many new solutions, its 

also standard and computerizable method which enable us 

to solve complicated nonlinear evolution equations in 

mathematical physics. The paper is organized as follows.  

In Section 2, we describe briefly the generalized 

'

G

G

 
 
 
 

-

expansion method, where  =G G   satisfies the second 

order linear ordinary differential equation  

= 0, = ( ) ( )G G G p t x q t      . 

 In Section 3, we apply this method to the generalized 

Mkdv equation. In section 4, some conclusions are given. 

II. DESCRIPTION THE GENERALIZED 

'

G

G

 
 
 
 

-

EXPANSION METHOD  

 

Suppose that we have the  following nonlinear partial 

differential equation 

 , , , , , ,... = 0,t x tt xt xxP u u u u u u              (2.1)  

 we suppose its solution can be expressed by a polynomial 

'

G

G

 
 
 
 

 as follows:  

       0

1

=     ,  0,

i
'

n

i j

i

G
u t t t

G

 
   
 
 

   

 (2.2) 

where  0 t  and    j t  are functions of t 

( =1,2,..., )j n  and = ( , )x t   is a function of ,x t   

to be determine later,  =  G G  satisfies the second 

order linear ordinary differential equation 

      = 0,G G G                        (2.3) 

To determine u  explicitly we take the following four steps. 

Step 1. Determine the integer n  by balancing the highest 

order nonlinear terms and the highest order partial 

derivative of u  in Eq. (2.1). 
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Step 2. Substitute Eq.(2.2) along with Eq. (2.3) into Eq. 

(2.1) and collect all terms with the same order of 

'

G

G

 
 
 
 

 

together, the left hand 

side of Eq. (2.1) is converted into a polynomial in

'

G

G

 
 
 
 

. 

Then set each coefficient of this polynomial to zero to 

derive a set of over-determined partial differential equations 

for    0 ,  it t   and  . 

Step 3. Solve the system of all equations obtained in step 2 

for    0 ,  it t   and   by use of Maple. 

Step 4. Use the results obtained in above steps to derive a 

series of fundamental solutions of Eq. (2.3) depending 

on

'

G

G

 
 
 
 

, since the solutions of this equation have been 

well known for us, then we can obtain exact solutions of 

Eq. (2.1). 

III. THE GENERALIZED COMBINED KDV AND 

MKDV  EQUATION 

In this section, we apply the generalized 

'

G

G

 
 
 
 

- expansion 

method to solve the generalized FitzHugh-Nagumo 

equation, construct the traveling wave solutions for it as 

follows: 

Let  us first consider the generalized KdV equation  

       2  = 0,t x x x xxxu a t u b t u u c t u u e t u          

                                                                           (3.1) 

where      , , a t b t c t  and  e t  are functions of .t  

There is no any method gvae the exact solution of the above 

equation before. In order to look for the traveling wave 

solutions of Eq. (3.1) we suppose that 

     , = , = ( )u x t u p t x q t           (3.2) 

Suppose that the solution of Eq. (3.1) can be expressed by a 

polynomial  in 

'

G

G

 
 
 
 

 as follows  

   
 

 
 0

1

=    

i
'

n

i

i

G
u t t

G

 
  
 
 




  


                 (3.3) 

considering the homogeneous balance between   xxxu   and 

2  xu u  in Eq. (3.1) we required that 3 = 2 1,n n n    

then =1.n  So we try to find a solution of the form   

     
 

 
0 1, = ,

G
u t x t t

G





 


                       (3.4) 

where G  satisfies  

 = 0.G G G     

It is easy to see that  p t  must be a constant function 

assuming that  1 t  is not zero on any interval of positive 

length. Substituting Eq.(3.4) into Eq.(3.1) along with 

Eq.(2.3) and comparing the coefficients of 

, = 0,1,2,3,4

k
'

G
k

G

 
 
 
 

 we obtain the following 

equations 

  2 3 2

0 1 0 0= 2q ap b p c p ep               

                                                                           (3.5) 

 2

1 1 0 1 0= q ap b p b p c p                     

 3 2

0 12 8c p ep                         (3.6) 

 2

1 1 0 1 0 0 1= 2q p a b b c c            

  2 2 2

1 8 7c ep                               (3.7) 

 2 2

1 1 0 1 12 12 = 0p b c c ep                  (3.8) 

  2 2

1 1 6 = 0.p c ep                          (3.9) 

We solve Eq.(3.9) for 1,  Eq.(3.8) for 0  and Eq.(3.7) for 

q  . We obtain (choosing one solution of Eq.(3.9)

 1

6
=

e
p

c


                                             (3.10) 

 0

1 6
=

2 2

b e
p

c c


                  (3.11) 
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 2 2 2 2= 4 2 8
4

p
q ac b cep ep c

c
               (3.12) 

Now we substitute Eq.(3.9), Eq.(3.10), Eq.(3.11) into 

Eq.(3.6) and obtain 1 = 0  implies that  

    =e t r c t                                          (3.13) 

Where r is constant.  

we substitute Eq.(3.9), Eq.(3.10), Eq.(3.11) into Eq.(3.5) 

and obtain  0 = 0  implies that 

    =b t s c t                                             (3.14) 

Where S  is constant.  

Therefore, the solution of the Eq.(3.5), Eq.(3.6), Eq.(3.7), 

Eq.(3.8) and Eq.(3.9) is as follows. We must assume 

Eq.(3.13) and Eq.(3.14) otherwise there is no solution.  

Then  q t  is obtained  from Eq.(3.12) by 

        2 2 2= 4 2
4

p
q t a t s c t rp c t    

  28rp c t                                                (3.15) 

Moreover, 0 and 1  are constant functions 

    0

1
= 6

2
t s rp                   (3.16) 

and  

  1 = 6 .t rp                                  (3.17) 

As an example, take 

 =1, = 1, =1, = 0, = 1p r s    

and  

     2= , = , = cosh .c t t a t t G    

Then  

  3 2

0 1

1 1 7
= , = 6, = .

2 3 8
q t t t     

We obtain that  

  3 21 1 7
, = 6 tanh ,

2 3 8
u t x x t t

 
    

 
 

                                                                                     ( 3.18)      

 with 

 
3 21 7

=
3 8

x t t   

is a solution of equation Eq.(3.1). One can check with the 

computer that u  given by Eq.(3.18) is really a solution of 

Eq.(3.1). 

IV. CONCLUSION 

This study shows that the generalized 

'

G

G

 
 
 
 

-expansion 

method is quite efficient and practically will suited for use 

in finding exact solutions for the problem considered here. 

New and more general excat solutions for any arbitrary 

functions  , ( ), ( )a t b t c t  and  e t  are obtained, there 

is no any method before, gave any exact solution for this 

equation. Also we construct an innovative explicit traveling 

wave solutions involving parameters of the generalized 

combined KdV and  mKdV equation. 
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