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ABSTRACT 
     In this paper we introduced the Navier-Stokes 

equations with a boundary (D+N) condition. We have 

shown the existence and uniqueness of the solution of 

the weak formulation obtained. We used the 

discretization by mixed finite element method. In order 

to evaluate the performance of the method, the 

numerical results are compared with some previously 

published works or with others coming from 

commercial code like Adina system. 
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I. INTRODUCTION 
    The mixed finite element method, based on the velocity-

pressure formulation, is being increasingly used for the 

numerical solution of the Navier-Stokes equations. In this 

paper we will discuss the mixed finite element method for 

the nonlinear Navier-Stokes problem with a boundary 

condition noted (D+N). Under suitable existence and 

uniqueness conditions of the weak formulation of this 

problem.                                                                                                                                                                                       

The plan of the paper is as follows.  Section II presents the 

model problem used in this paper. The discretization by 

mixed finite elements is described in section III. Numerical 

experiments carried out within the framework of this 

publication and their comparisons with other results are 

shown in Section IV. 

 
II. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS  
   We consider the steady-state Navier-stokes equations for 

the flow;  

              in  .
2

 fpuuu
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Where    0  a given constant is called the kinematic 

viscosity, u


 is the fluid velocity, p is the pressure field.   

is the gradient, .   is the divergence and 
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Laplacien operator,  22 )( Lf
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The boundary value problem that is considered is the 

system (1)-(2) posed on two or three-dimensional domain 

  ,  with boundary conditions on    noted N)(D  

and given by 
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Ω is a bounded and connected domain of
2IR with a 

Lipchitz continuous boundary    where n


 denote the 

outward pointing normal to the boundary,   22
)(  Lt


 

a is  0band  function defined on   verify: There are 

two strictly positive constants 00  and  such that: 

       000 )(   xb   for all x                           (4) 

The presence of the nonlinear convection term uu


.  

means that boundary value problems associated with the 

Navier-stokes equations can have more than one solution. 

We define the spaces: 
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The standard weak formulation of the Navier-Stokes flow 

problem (1) – (2)-(3) is the following  

  such that )()(, 
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Resolution of Navier-Stokes equations using mixed finite element method 

and the (D+N) boundary condition 

 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.2, Mar-Apr 2012 pp-487-492             ISSN:2249-6645  

                                                                                www.ijmer.com                                                   488 | Page 

 


















     



     

 (11)                                                                                        0.q-  

                           

......: 0

du

dvfdvtdvpdvuudvubdvu






    . )()(,  
2

0

1

,  LHqvallfor ln
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The underlying weak formulation (11) may be restated as 

  such that )()(, 
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In the sequel we can assume that 0 and  0


 tl   and we 

will study the existence and uniqueness of the solution of 

the problem (17), for that we need the following results. 
 

Lemma 2.1. 

1) There is two strictly positive constants 
1c and 

2c  such 

that 
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Proof.  For 1, 2, 3 and 4 see [9]. 
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By Green formula we have   
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9) The same proof of  V.Girault and P.A. Raviart in [6] 

page 115. 

Theorem2.2.   b is satisfies the inf-sup condition:  

There exists a constant  0 such that 
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      We define the “big” symmetric bilinear form  
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       (29) 

According the theorems 1.2 and 1.4, chapter IV in [6], (26) 

and (27) ensure the existence at least one 
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Then a well-know (sufficient) condition for uniqueness is 

that forcing function is small in the sense that  
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 (it suffices to apply theorems 1.3 and 1.4 chapter IV in 

[6]).  
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For some fixed number ]1,0[  then there exists a unique 

solution  )()(),(
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of (17) and it holds  
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Proof. The some proof of theorem 2.4 chapter IV in [6].  

 

Lemma 2.4. There are two strictly positive constants 1s  and 

2s such that: 
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We take ),( 01 Mins  and ),( 02 Maxs     we 

obtain (34). 

 

III.    MIXED FINITE  ELEMENT      

APPROXIMATION 
    Our goal here is to consider the stationary Navier-Stokes 

equations with boundary condition (D+N) in a two-

dimensional domain and to approximate then by mixed 

finite element method. 

Mixed finite element discretization of the weak formulation 

of Navier-stokes equations gives rise to nonlinear system of 

algebraic equations. 

Two classical iterative procedures for solving this system 

are Newton iteration and Picard iteration.  
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 Let ,0;  hTh  be a family of triangulations of Ω. For any  

, , ThTT  is of triangles sharing at least one edge with 

element T, T
~   is the set of triangles sharing at least one 

vertex with T. Also, for an element edge E, E   denotes 

the union of triangles sharing E, while T
~   is the set of 

triangles sharing at least one vertex whit E. 

Next, 𝜕T is the set of the tree edges of T we denote 

by )(  T  and TN   the set of its edges and vertices, 

respectively. 

We let   )(  T
hTT

h 

  denotes the set of all edges split 

into interior and boundary edges. 

                       ,,  hhh   
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We define the appropriate bases for the finite element 

spaces, leading to non linear system of algebraic equations. 

Linearization of this system using Newton iteration gives 

the finite dimensional system: 
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Here, )( hk vR


 and )( hk qr   are the non linear residuals 

associated with the discrete formulations  

(36).To define the corresponding linear algebra problem, 

we use a set of vector-valued basis functions. 
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We introduce a set of pressure basis functions  
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and set  



pp n

k

kkh

n

j

kkh pppp
11

  ;                (39) 

                        

 pu nn  and    Where are the numbers of velocity and 

pressure basis functions, respectively. 

We find that the discrete formulation (38) can be expressed 

as a system of linear equations 
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 The system is referred to as the discrete Newton problem. 

The matrix A is the vector Laplacian matrix and B is the 

divergence matrix  
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The vector-convection matrix N and the Newton derivative 

matrix W are given by  
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For i and .,...,1  unj   The Newton derivative matrix is 

symmetric. 

The right-hand side vectors in (41) are 

    dffff iii 


. ;                                             (45)                                            

for .,...,1  unj    

For Picard iteration, we give the discrete problem 
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IV.   NUMERICAL SIMULATION  

     In this section some numerical results of calculations 

with mixed finite element Method and ADINA System will 

be presented. Using our solver, we run the Backward-facing 

step problem (17) with a number of different model 

parameters. 

 

Example.  Backward-facing step problem. 
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This example represents flow in a rectangular duct with a 

sudden expansion. A Poiseuille flow profile is imposed on 

the inflow boundary ),10 ,1(  1  yx and a no-

flow (zero velocity) condition is imposed on the walls. 

The (D+N) condition (47) is applied at the outflow 

boundary ),11 ,5(  5  yx  

 and automatically sets the mean outflow  pressure to zero. 
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With these data, see that the (D+N) condition is satisfied, 

just  take 
14

0 10  


b on )11 ,5(  5  yx ; 

;on  10  432

28

0 b ;on  )0;10(  1

28
t



)0;0(  t


 on the other four boundary 

 Fig.1. Equally distributed streamline plot associated with 

a 9632     square grid, 21  PP  approximation and    

Re=200. 

 

 
Fig.2. The solution computed with ADINA System. The 

show the Streamlines associated with a 9632    square 

grid. 

 

Fig .3. Velocity vectors solution by MFE associated with a 

9632    square grid and Re=200.  

 

Fig.4. Velocity vectors solution by ADINA system 

associated with a 9632    square grid and Re=200.  

 
Fig.5. Pressure plot for the flow with a 9632    square 

grid.       

 

     The two solutions are therefore essentially identical. 

This is very good indication that our solver is implemented 

correctly. 

V.  CONCLUSION 
    In this work, we were interested in the numerical solution 

of the partial differential equations by simulating the flow 

of an incompressible fluid. We applied the mixed finite 

element method to the resolution of the Navier-Stokes 

equations with boundary condition noted (D+N). 

Numerical results, either resulting from the literature, or 

resulting from calculation with commercial software like 

Adina system. 
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