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ABSTRACT 
This paper describes numerical solutions of 

incompressible Navier-Stokes equations. It includes 

algorithms for discretization by finite element methods 

and a posteriori error estimation of the computed 

solutions.  

                A numerical experiment on the driven cavity 

flow is given to demonstrate the effectiveness of the 

error estimate. We compare the result with the solution 

from ADINA system as well as with values from other 

simulations. 

 

Keywords - Navier-Stokes Equations, Finite Element 

Method, A posteriori error estimation, Adina system. 

 

I. INTRODUCTION 

This paper describes a numerical solution of partial 

differential equations (PDEs) that are used to model steady 

incompressible fluid flow. For the equations, we offer a 

choice of two-dimensional domains on which the problem 

can be posed, along with boundary conditions and other 

aspects of the problem, and a choice of finite element 

discretizations on a quadrilateral element mesh.  

The plan of the paper is as follows. The model problem is 

described in section II, followed by a posteriori error 

bounds of the computed solution in section III and 

numerical experiments are carried out in section VI. 

 

II. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS  
We consider the steady-state Navier-Stokes equations for 

the flow of a Newtonian incompressible viscous fluid with 

constant viscosity: 
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Where 0 is a given constant called the kinematic 

viscosity. 

u


 is the fluid velocity, p is the pressure field, is the 

gradient and    is the divergence operator.     

The boundary value problem that is considered is the 

system (1) posed on two or three-dimensional domain  .   

 

 

 

We define the spaces: 

                                   1

0

1

0 HHV ,                 (2)  

and 

                 0:2   dxxqLqW ,               (3) 

Let the bilinear forms IRVVa : , 

IRWVb : , IRWWd : , and the trilinear 

form IRVVVc :     

         
   , ,       , υ,     , ., pqdxqpddxqqvbvdxuvua  ,   (4) 

               . υυ,,   uzuzc                     (5) 

These inner products induce norms on V and W denoted by 

V
υ and 

W
q respectively. 

                   2

1

,vvav
V
    Vv ,              (6) 

                 2

1

,qqdq
W
   Wq .              (7)  

Given the continuous functional IRVl :  

                       ,  υυ dxfl                        (8) 

Then the standard weak formulation of the Navier-Stokes 

flow problem (1) is the following: 

Find   WVpu , such that 

         qlqubuucpbua  ,υ,,υ,υ, , for all      

  WVq ,υ
.                                                            (9) 

Let the subspace of divergence-free velocities be given by 

  sur    0et    sur  0;
0

znzVzVE .     (10) 

The convection term is skew-symmetric: 

   uzcuzc ,υ,υ,,  ; over 
0EV ,this mean that 

                    0,, uuzc   
0EVz                (11) 

The problem (9) is known [4] to possess a unique solution 

whenever the data is sufficiently small. In particular, if 

A posteriori error estimation for incompressible flow problem 
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For some fixed  1,0 then there is a unique solution 

Vu satisfying 

                        
 

.1

C
u

H





                          (13) 

Let P be a regular partitioning of the domain   into the 

union of N subdomains K such that 

 N  , 

  PK
K


 , 

 JK  is empty whenever JK  , 

 Each K is a convex Lipschitzian domain with 

piecewise smooth boundary K .  

The common boundary between subdomains K and J is 

denoted by 

               JKKJ  .                                (14) 

The finite element subspaces X  and M are constructed in 

the usual manner so that the inclusion 

WVMX  holds. 

The finite element approximation to (9) is then  

Find  MX pu , such that 

         MMXXXMX qlqubuucpbua  ,υ,,,υυ, XXX       (15) 

For all   WVqM ,υX
. 

Let   WVEe , be the error in the finite element 

approximation, 
Xuue  and 

MppE  and define 

  WV , to be the Ritz projection of the modified 

residuals 

           υ,,,e,υυ,,υ, XuuDqbEbeaqda   ,       (16) 

for all   WVq ,υ ,  

where 

     υ,,υ,,υ,, XXX uucuucuuD  . 

Theorem 2.1.  Let (13) hold. Then there exist positive 

constants 1K and 2K such that 

    22

2

2222

1 WVW

M

V

X

WV
KppuuK          (17) 

Proof.  See T.J. Oden, W. Wu, and M. Ainsworth [16]. 

                                                       

III.  A POSTERIORI ERROR ANALYSIS 

 

The local velocity space on each subdomain PK  is 

         KKHKHVK  Ωsur  0υ: υ 11
      (18) 

And the pressure space is 

                               KLWK

2                           (19) 

  Let the bilinear forms                                                                  

IRVVa KKK :
,

IRWVb KKK :
,

IRWWd KKK :
,              

 and the trilinear form IRVVVc KKKK :   

   
K

K uua υυ,  ,     
K

K qb υq,υ ,        

                K
K pqqpd ,                            (20) 

                 υυ,;  KK uzuzc                   (21) 

Given the continuous functional IRVl KK :  

                        xfl
K

K d υυ                             (22) 

Hence for Vwυ, and Wq we have 

                     



PK

KK wawa ,υ,υ K                   (23) 

                      



PK

KK qbqb ,υ,υ K                    (24) 

                 



PK

KKK uzcuzc Kυ,,υ,,               (25) 

                         Kυυ 



PK

Kll                           (26) 

The broken velocity space  PV  is defined by 

                          



PK

KVPV                               (27) 

And the broken pressure space is defined by 

            







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


0d : xxqWqPW
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K        (28) 

Examining the previous notations reveals that 

                                      WPW                               (29) 
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We consider the space of continuous linear functional  on 

   PWPV   that vanish on the space WV  Therefore, 

let  ,divH  denote the space 

         22222 :, 


LdivALAdivH       (30) 

Equipped with norm 

        
     

  2

1
22

,
 22 


LLdivH

divAAA          (31) 

Theorem 3.1. A continuous linear functional  on the 

space    PWPV   vanishes on the space WV  if and 

only if there exists   ,divHA such that 

                  





PK
K

K dsAnq ,υυ, K               (32) 

Where Kn denotes the unit outward normal vector on the 

boundary of K. 

Proof. See M. Ainsworth and J. Oden [5]. 

It will be useful to introduce the stress like tensor 

 ,qυ formally defined to be 

                     ij

j

i

ij q
x

 





υ
                   (33) 

where ij  is the Kronecker symbol. 

In order to define the value of the normal component of the 

stress on the interelement boundaries it is convenient to 

introduce notations for the jump on KJ  : 

                   M

J

X

JJ

M

K

X

KK

MX qnqnqn ,υ,υ,υ             (34) 

Furthermore, an averaged normal stress on is defined as  

  
 
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 

 

 
 M
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K qnqnqn ,υ
0

0
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0

0
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1










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






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






    (35) 

where 
  IRKJ

i

KJ : are smooth (polynomial) 

functions. Naturally, should the stress be continuous then it 

is required that the averaged stress coincide with this value. 

Therefore, on KJ
, 
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

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The notation [[.]] is also used to define jumps in the 

elements of  PV between subdomains. 

Define  

                   









,   ,  υυ

,   ,  υυ
υ
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and 
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

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,   ,  

JKnn
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The following identity, valid for  PVυ  is readily 

verified: 

            dspundspun
KJ

KJ

MX

K

PK
K

MX

K 






 υ,υ,         (39) 

Lemma 3.1. Under the above notations and conventions, 

there exists   ,divH  such that for all 

     PWPVqw ,  

           





KJ
KJ

dswpunqw MX

K ,,     (40) 

Proof. See M. Ainsworth and J. Oden [14]. 

Summarizing, we have shown the following : 

Theorem 3.2. Let IRVJ KK : be a quadratic 

functional 

         

    .,,,

,,,
2

1
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K
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M
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dswpunwuuC

pwbwuawlwwawJ



       (41) 

Then 

        









 

PK

X

K

X

KKKK
VwWV

uudwJ
KK

,inf2
22

 . (42) 

The analysis has leads to problems on each subdomain of 

the form 

 .inf KK

Vw

wJ

KK

   

Suppose for a moment that the minimum exists, then the 

minimizing element is characterized by finding 

Kk V such that 

            
K

MX

K

XX

K

M

K

X

KKk dspunuuCpbuala υ,υ,,υ,υ,υυ,    (43) 

for all KVυ . 

The necessary and sufficient conditions for the existence of 

a minimum are that the data satisfy the following 

compatibility for equilibration condition: 

             
K

MX

K

XX

K

M

K

X

KK dspunuuCpbual  ,,,,,0    (44) 
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For all  KVaKer , , 

where 

            KKKK VwwaVVaKer    0,  :,  .     (45) 

When the subdomain K lies on the boundary  the local 

problem (43) will be subject to a homogeneous Dirichlet 

condition on a portion of their boundaries and thus will be 

automatically well posed. However, elements away from 

the boundary are subject to pure Neumann conditions and 

the null space of the operator  ,a  will contain the rigid 

motions 

               21,, SpanVaKer K  ,                    (46)   

and 

                   







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





1

0
            , 

0

1
21               (47) 

We shall be able to construct data which satisfy the 

equilibration condition (44). First we define 
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So that consistency condition (36) becomes 
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






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
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The averaged interelement stress may be rewritten 

       
 

  









2

1

2

1

0

0
,υ,υ,υ

KJ

KJMXMX

K

MX

K qnqnqn



       (50) 

Where  
2

1,υ MX

K qn   denotes the interelement 

averaged stress obtained using the symmetrical weighting 

corresponding to 
2

1
 . The equilibration condition then 

becomes 

  

         

   
 

 
, 

0

0
 ,

,,,,,

2

1

dspun

dspunuuCpbual
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PJ

MX

K
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K
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K

M

K

X
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KJ






























 (51) 

For all  KVaKer , . 

Let  AV be chosen so that 

    VVSpanVSpan AA  and scaled so that 

                          1 xV
A

A .                                 (52) 

The relation (52) must hold at all points x contained in 

elements which do not interest the boundary of the domain. 

The functions 
  IRKJ

k

KJ : are chosen to be of the 

form 

                   
       sVs

A

A

k

AKJ

k

KJ  , ,                     (53) 

Where 
 k

AKJ , are constants to be determined. Owing the 

constraint (49), it is required that 

                        
    0,,  k

AJK

k

AKJ  ,                           (54) 

for each A. 

Lemma 3.2. Suppose that for each AV the constants 
 k

AKJ ,  

can be chosen to satisfy 

                         (55) 

for k=1, 2, where 

    

         

    ,,

,,,,,

dspunsV

VuuCpVbVuaVlb

k

MX

K
K

A

kA

XX

K

M

kAKkA

X

KkAK

k

AK










   (56) 

and 

                    dsqn k

MXk

AKJ

KJ

  


,υ,
         (57) 

Then 

            
K

MX

KkA

XX

K

M

K

X

KK dspunVuuCpbual  ,,,,,0  ,     (58) 

for all ND  . 

Proof. The result follows immediately by forming 

appropriate linear combination of (55), and using (53) and 

(49). Summarizing and incorporating the results of section 

3 we have 

Theorem 3.3. Let the conditions of Theorem 2.1 hold. 

Then there exists a constant C such that 

  





PK

KCEe 22
,                           (59) 

Where  

           2

1

,, XX

KKKKK uuda   ,   (60) 

We define the global error estimator 

                            
2

1

2








 

PK

K                                 (61) 
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IV. NUMERICAL SIMULATIONS 
          In this section some numerical results of calculations 

with finite element Method and ADINA system will be 

presented. Using our solver, we run the test problem driven 

cavity flow [1, 6, 7, 8, 9, 10].  

 41   1x1- ; 1 xuy x  a leaky cavity. 

The streamlines are computed from the velocity solution by 

solving the Poisson equation numerically subject to a zero 

Dirichlet boundary condition. 

The solution shown in figure 1 corresponds to a Reynolds 

number of 100. The particles in the body of the fluid move 

in a circular trajectory. 

The profiles of the u-velocity component along the vertical 

centerline and the v-velocity component along the 

horizontal centerline are shown in Figure 2 for Re=1000. In 

this figure, we have also included numerical predictions 

from [6] and ADINA system. There is excellent agreement 

between the computed results, those published in [6] and 

the results computed with ADINA system. 

Table 1. Estimated errors for leaky driven cavity for the 

flow with Reynolds number Re =100. 

 

 

 

Fig.1. Uniform streamline plot with FE (left), and uniform 

streamline plot computed with ADINA system (right) using  

approximation, a 32×32 square grid and 

Reynolds number Re=100. 

            This is a classic test problem used in fluid dynamics, 

known as driven-cavity flow. It is a model of the flow in a 

square cavity with the lid moving from left to right. Let the 

computational model: 

 

Fig.2. Velocity vectors solution by FE (left) and velocity 

vectors solution (right) computed with ADINA system with 

a 32×32 square grid and Re= 100. 

 

Fig.3. Velocity component u at vertical centerline (left plot), 

and the velocity component v at horizontal centerline (right 

plot) with a 129×129 square grid and Reynolds number 

Re=1000.  

              Figure 3 shows the velocity profiles for lines  

passing through the geometric center of the cavity. 

These features clearly demonstrate the high accuracy 

achieved by the proposed finite element method for solving 

the Navier-Stokes equations in the lid-driven squared 

cavity.  

 

V. CONCLUSION 
We were interested in this work in the numeric solution for 

two dimensional partial differential equations modeling (or 

arising from) steady incompressible fluid flow. It includes 

algorithms for discretization by finite element methods and 

a posteriori error estimation of the computed solutions.  

Our results agree with Adina system. 

Numerical experiments were carried out and compared with 

satisfaction with other numerical results, either resulting 

from the literature, or resulting from calculation with 

commercial software like Adina system.  
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