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ABSTRACT 
                    In the present paper, a subclass of harmonic univalent functions is defined using generalized derivative operator and 

we have obtained among others results like, coefficient inequalities, distortion theorem and convex combination. 
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1. INTRODUCTION 

                        A continuous function ( )f z  is said to be a complex-valued harmonic function in a simply connected domain D  

in complex plane C  if both Re( )f and  Im( )f are real harmonic       in D . Such functions can be expressed as  

 

                          
( ) ( ) ( ) (1.1)f z h z g z                  

                                                             

where ( )h z  and ( )g z  are analytic in D . We call ( )h z as analytic part and ( )g z  as co-analytic part of ( )f z . A necessary 

and sufficient condition for ( )f z   to be locally univalent and sense-preserving in D  is that 
' '( ) ( )h z g z  for all z  in D . 

[2] 

                   Let HS be the family of functions of the form (1.1) that are harmonic, univalent and orientation preserving in the 

open unit disk { : 1}U z z  , so that   ( ) ( ) ( )f z h z g z 
 
is normalized by (0) (0) (0) 1 0.zf h f     Further 

( ) ( ) ( )f z h z g z  can be uniquely determined by the coefficients of power series expansions.  

 

                      

1

2 1

( ) , ( ) , , 1, (1.2)p p

p p

p p

h z z a z g z b z z U b
 

 

              

                           

where pa C  for 2,3,4,...p   and  pb C  for 1,2,3,...p   

We note that this family HS was investigated and studied by Clunie and Sheil-Small [2 ] and it reduces to the well-known family 

S  the class of all normalized analytic univalent functions  ( )h z  given in (1.2), whenever  the co-analytic part  ( )g z  of ( )f z  

is identically zero.  

Let 
HS denote the subfamily of HS consisting of harmonic functions of the form  

                                       
( ) ( ) ( )n nf z h z g z   

Where             
n

p n p 1

p=2 p=1

h(z)=z+ a  ,    g (z)=(-1) , , 1. (1.3)p pz b z z U b
 

                                                       

For ( ) ( ) ( )f z h z g z 
 
given by(1.1),  we define the derivative operator introduced by Shaqsi and Darus [8] of ( )f z as, 

On A Subclass of Harmonic Univalent Functions Defined By 

Generalized Derivative Operator  
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                               , , ,( ) ( ) ( 1) ( ) , (1.4)n n n n

m m mD f z D h z D g z    
                                                                                  

  

where 

                           

 ,

2

( ) 1 ( 1) ( , )

n

n p

m p

p

D h z z p C m p a z 




     

                        

 , 1

1

1
( ) 1 ( 1) ( , ) , 1, ( , ) .

n

n p

m p

p

p m
D g z p C m p b z b C m p C

m
 





  
      

 
    

Definition: The function ( ) ( ) ( )f z h z g z  defined by (1.2) is in the class ( , , , , )HS n m k   if  

                      

1 1

, ,

, ,

( ) ( )
Re 1 (1.5)

( ) ( )

n n

m m

n n

m m

D f z D f z
k

D f z D f z

 

 


   

   
  

                                                                                    

where 0 k  , 0 1.   

Also let  

            ( , , , , ) ( , , , , ) (1.6)H H HS n m k S n m k S    
                                                                              

 

                We note that by specializing the parameter, especially when 0,k  ( , , , , )HS n m k    reduces to well-known 

family of starlike harmonic functions of order   . In recent years many researchers have studied various subclasses of HS  for 

example [1],[3],[4],[6]and [8].  

               In the present paper we aim at systematic study of basic properties, in particular coefficient bound , distortion theorem 

and extreme points of aforementioned subclass of harmonic functions.  

2. MAIN RESULTS 

Theorem1: Let ( ) ( ) ( )f z h z g z    be given by (1.2). If condition  

     

 
 

     

 
 

1

1 1 1 1 1 1 1 1 1 1
, , 2

1 1

(2.1)

n n

p p
p

p k p k p k p k
C m p a C m p b

     

 





                                      
   

 where 

 1 1, 0 1, 0 , 0 ,a k n N      
                                                                

then ( )f z is sense-preserving 

harmonic univalent in U  and ( , , , , ).Hf S n m k    

Proof: If the inequality (2.1) holds for coefficients of ( ) ( ) ( )f z h z g z   then by (1.2), ( )f z  is orientation preserving and 

harmonic univalent in .U  Now it remains to show that  ( , , , , )Hf S n m k   . According to (1.4) and (1.5) we have  

                               

1 1

, ,

, ,

( ) ( )
Re 1

( ) ( )

n n

m m

n n

m m

D f z D f z
k

D f z D f z

 

 


   

   
  

     

which is equivalent to  
( )

Re
( )

A z

B z
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where   1

, ,( ) 1 ( ) ( )n n

m mA z k D f z kD f z 

   and  
,( ) ( )n

mB z D f z  

Using the fact that, Re( )w   if 1 1w w     
 
it suffices to show that  

   ( ) 1 ( ) ( ) 1 ( )A z B z A z B z       substituting values of A(z)  and B(z)  with simple calculations we led to 
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By assumption. Hence proof is completed.  

The functions 
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1 1
( )

1 1 1 1 1 1 1 1 1 1
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p pn n
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f z z x z y z
p k p k p k p k

 

     

 

 

    
     
                                        

 

 

where  

2 1

1p p
p p

x y
 

 

                                                                                                  (2.3)  

shows that the coefficient bound given (2.1) is sharp.  

Theorem 2: Let ( ) ( ) ( )n nf z h z g z   be so that ( )h z and ( )ng z  given by (1.6). Then ( , , , , )n Hf S n m k    if and 

only if  
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where 1 1,0 1,0 .a k     
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Proof: The if part follows form Theorem1 with the fact the ( , , , , ) ( , , , , ).H HS n m k S n m k      For only if part, we 

show that ( , , , , )n Hf S n m k    if the condition (2.4) is not satisfied. Note that necessary and sufficient condition for Let 

n nf h g   given by (1.6) to be in ( , , , , )HS n m k    is that  
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which is equivalent to  
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The above conditions must hold for all values of z , 1z r  . Choosing  z  on positive axis where 0 1z r   . we have  
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or equivalently if the condition (2.4) dose not hold then the numerator in (2.5) is negative for r sufficiently close to 1.  

Thus there exists 0 0z r  in (0,1) for which the quotient in (2.5) is negative .This contradicts that required condition for 

( , , , , )n Hf S n m k     and hence proof is completed.  

Theorem 3: Let nf  be given by (1.6). Then  , ;n Hf S k n  if and only if  

   
1

( ) ( )
pn p p p n

p

f z x h z y g z
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where,  1( ) 1,h z    
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  and  

0, 0p px y  ,   1
2

1 0p p
p

x x y




    .  

In particular, the extreme points of ( , , , , )HS n m k     are  nh and  
png .  

Proof: Let  
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and so ( , , , , )n Hf S n m k   .  

Conversely, suppose that ( , , , , ).n Hf S n m k     

 

Setting  
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where  
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   we obtain    
1

( ) ( )
pn p p p n

p

f z x h z y g z




   as required.  

Theorem 4: Let  ( , , , , )n Hf S n m k  
 
then for 1z r   

we have  
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Proof. Let  ( , , , , )n Hf S n m k    .Taking absolute value of nf  we obtain  
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The forthcoming result follows from left hand inequality in Theorem 2.4. 

Theorem 5:The class of  ( , , , , )HS n m k     is closed under convex combination.  

Proof: For 1,2,3,...i  suppose   ( , , , , )
in Hf z S n m k    where  
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then by Theorem 2  
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and therefore   
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( , , , , )
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This completes the proof.  
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