
International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.3, May-June 2012 pp-830-833             ISSN: 2249-6645 
 

                                                                   www.ijmer.com                                                   830 | Page 

 

 

 

R. KATHIRESH
1
          P. KALIDASS

2
                  M. SENTHIL KUMAR

3
 

1. PG scholar, Department of ECE (PG), Ranganathan Engineering College, Coimbatore, India. 

2. PG scholar, Department of ECE (PG), Ranganathan Engineering College, Coimbatore. India. 

3. Assistant Professor, Department of ECE (PG), Ranganathan Engineering College, Coimbatore. India.  

 

 

Abstract: 
In Electronics Industry, designing of a processor must meet 

all requirements, but fails to meet one or two ones. In multi-

applications like microprocessors, signal generations and 

testing of processors. An embedded processor must 

compute the necessary result when performed through 

instructions. The efficiency of instruction has attracted 

much attention since the instruction cache accesses 

consume a great portion of the whole processor power 
dissipation and finally leads to inefficient nature. We 

propose a memory architecture/structure cache to utilize the 

instructions delivery as an alternative way. The main theme 

is to reuse the retired instructions from the pipeline back-

end of a processor and performs well and efficiency in 

power. 

 

Key words: - Cache memories, Computer architecture, 

Energy Management, Microprocessors 
 

I. Introduction 

 Improving the efficiency of instruction delivery has been 

an important strategy in boosting processor performance. In 

addition to employ cache memories, schemes for control 

flow also being proposed. Some of the well known research 

topics include branch prediction, instruction prediction and 

trace caches. On the other hand simply allocating more 

hardware to increase the size of instruction cache has 

become a viable option for embedded processors. To 
achieve better efficiency for the cache system, the filter 

cache scheme being developed to trade performance for 

better energy. However this leads to degradation in 

performance of increased access latency. Essentially the 

front end of processor improves the energy efficiency of 

instruction delivery. The efforts to aim to speculate the right 

program traces prior to the branch instructions are resolved, 

reduces the program execution latency or the energy 

consumption via the speculated trace information. Since the 

speculated traces given that they are correctly predicted, 

will ultimately be retired from pipeline and become history 
traces. These executed traces are potentially very useful in 

case of an embedded processor. For more number of 

instructions to execute the embedded processor will take 

more cycles to complete the loop due to branch prediction. 

Branching can be avoided, if embedded processor fetches 

instructions in the history trace. 

 

 

 

II. Existing survey 
To investigate the feasibility of delivering instructions from 

the pipeline back-end, we perform simulations using the 

processor model as shown in fig., The architecture consists 

of an embedded processor with additional D-Flip flops at 

each stage of the pipeline and HTB at the back end. The 

HTB is managed as a FIFO (first input first output) buffer 

to capture a fixed length of most recently retired instruction 

sequence. For each instruction fetched from the front-end, 

the HTB is searched to see if the same instruction also hits 
in the buffered history trace. The total instructions fetched 

are summed throughout the simulation to calculate the raw 

HTB hit rate 

Due to the reduced complexity and size, the HTB is far less 

than power hungry than the instruction cache. If an 

instruction can be delivered from the HTB whenever a hit 

occurs, an energy saving proportional to the hit rate can be 

achieved. In this paper we propose a novel scheme called 

Trace Reuse (TR) cache to improve the energy efficiency of 

instruction delivery for embedded processors. These 

instructions are useless for program execution but are 

inevitable for perfect predictors. 
 

From Instruction Cache 

(Instruction Register) 

 

Branch M 

Inst C 

Inst B 

Inst A 

Branch M 

 

Inst C 

Inst B 

Inst A 

Branch M 

Inst C 

 

Fig. Pipeline and the history trace buffer 

 

III. TR CACHE & design 
The TR-CACHE is composed of a History Trace-Buffer 

(HTB), which collects the instructions retrieved from the 

pipeline back end of the processor, and a trace entry table. 

We present a TR Cache architecture that is capable of 

delivering instructions from HTB for embedded processors. 

The architecture of the TR Cache is shown as follows: 

A Study of Energy Efficient Embedded Processor and its Reuse 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.3, May-June 2012 pp-830-833             ISSN: 2249-6645 
 

                                                                   www.ijmer.com                                                   831 | Page 

A simple multiplexer and mode switching logic are 

integrated into the fetch stage to select the proper 

instructions source. We present a TET design to index the 

HTB buffer for instruction source. The TET is a small 

memory structure used to group the instructions in the HTB 

buffer. The TET stores the trace-entry records each of 

which consists of the PC value of a control transfer 
instruction and the corresponding HTB entry index. The 

contents of HTB and TET are updated as follows: whenever 

an instruction is retired from the pipeline backend, it is 

buffered in the HTB along with its PC.Since the HTB is 

managed in a FIFO fashion. The oldest instruction will be 

discarded to make room for new one. If the discarded 

instruction is a marked trace entry, the corresponding 

record in TET will also be invalidated. 

 

 

 

 
 

 

      

      

      

      

      

      

      

      

      
      

      

      

      

      

      

 

 

 

 

 

 
Fig: TR Cache Architecture for Embedded processor 

 

To improve instruction buffering efficiency, a more 

complex basic block threading mechanism such as the 

design in may be used. On the other hand, the HTB is a 

simple FIFO without the complex logic for associative 

lookups. The HTB uses a simple index-based access 

mechanism, to be presented which brings advantages in 

power and area usage as compared with an associative 

look-up based design. 

 

 

 

 

 

 

Flow method of TR Cache 

The TR Cache an alternative source for instruction delivery, 

a new access mode is integrated to the fetch logic. We name 

the original access mode as the cache mode and the new 

ones as the TRC Mode. By Default the processor is in cache 

mode cycle, the TET is searched in parallel with the cache. 

The processor remains in cache mode until the TET search 
returns a  HIT. 

When Hit occurs, the HTB index returned by the TET will 

be latched and the processor will switch to the TRC mode 

at the next cycle. The availability of the incoming 

instruction is conformed by checking the current HTB 

index against the HTB boundary pointers. If the index has 

reached the end of the HTB, the TRC-mode operation will 

be aborted and the next PC will be generated for the cache-

mode operation. 

 

HTB-Size 

(Instructions) 

32 64 128 256 

Max.TET 

record count  

15 22 41 72 

 
Table1.different HTB sizes Vs TET record count 

 

The TET Size to be used is actually dependent on both the 

size of the HTB and the program behavior.The instruction 

delivery of TRC is as follows: 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

TAG 

UNIT 

 

DATA 
UNIT IF 

 
ID 
EXE,    
MEM, 
WB 

BRANCH M 
 
INST C 
INST B,  
INST A 
BRANCH M 

Empty 
 
PC (M), #5 
PC (N), #1 

#7 PC, Inst C 
#6 PC, Inst B 
#5 PC, Inst A 
#4 PC,Branch M 
#3 PC ,Inst T 
#2 PC , Inst S 
#1 PC,Inst R 
#0 PC,Branch N 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.3, May-June 2012 pp-830-833             ISSN: 2249-6645 
 

                                                                   www.ijmer.com                                                   832 | Page 

 

 

 

 

 

      

      
      

      

      

      

      

      

      

      

      

      

      

      
      

      

      

      

      

      

      

      

      

      

      
      

      

      

      

      

      

      

      

      

      

     

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

IV. RESULTS 
The new RTL code of the modified processor core,which 

includes the register file and the completed pipelined 

datapath is synthesized using UMC 90-nm  technology 

library. 

 

A. Access time and area estimations  

It is clear that the access time of the direct-mapped TETs is 

far les than that of the 16KB/32-Way Instruction Cache. 

This shows that TET search in parallel with the cache mode 

operation has no impact on the processor cycle time. 

B.IPC Performance  analysis 

The average IPC is due to the large variations in the elapsed 

cycle counts of the programs. 

 

IPC average=ΣIK/ΣCK 

 
The TR Cache provides significant performance 

improvement over the baseline processor. 

 

 
Fig. Average IPC Improvement Rate. 

 

The basic idea behind branch predicition is to extract useful 

branch targets from the history trace. 

C.     Energy Efficiency 

We present the evaluation of energy consumption and 

normalized energy-delay product of using the TR Cache. 

The Energy consumption of the fetch logic mainly comes 
from the power dissipation of the instruction cache and the 

augmented memory structures such as TET and HTB. 

 

V. CONCLUSION 
In this paper, the TR Cache architecture is proposed as an 

alternative source for instruction delivery of embedded 

processor. The processor can switch to the TR cache when 

a reusable trace is identified. The main difference of having 

TR Cache is that it can compute post–execution program 
information in a sequence over the conventional instruction 

cache. 

 

 

 

 

 

 

 

0.00%

5.00%

10.00%

15.00%

20.00%

Column3

Column2

Column1

START 

Fetch PC 

hit TET? 

Deliver instruction 

from CACHE 

Attain HTB 

index 

Reach HTB   

end? 

Mis prediction 

detected? 

Deliver 

instruction 

from HTB 

Increment 

HTB index 

Generate PC 

for Next  

Fetch 

Deliver 

instruction 

from CACHE 

 

Generate 

PC+4for next 

Fetch 

X 

      X 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.3, May-June 2012 pp-830-833             ISSN: 2249-6645 
 

                                                                   www.ijmer.com                                                   833 | Page 

REFERENCES 
[1] yi-yting tsai,chung-ho chen,”Efficient Embedded 

processors”Tech.Rep.Sep 2011 

[2] S.McFarling,”Combining Branch predictors”,Digital 

WRL,Jun.1993. 
[3] J.L.Hennessy and D.A.Patterson ,Computer 

Architecture:A Quantitative approach,4thed. San 

Francisco,CA:kaufman 2006. 

[4] E.Rotenberg,S.Benett and J.E.Smith ,”A trace cache 

microarchitecture and 

evaluation”,IEEETrans.Compt.,Vol.48,no.2,pp.111-

120,Feb.1999 

[5] A.Hossain,D.J.Pease,J.S.Burns and 

N.Parveen,”Traces cache performance 

parameters,”IEEETrans.Comput.Des.,Feb.2002,pp.34

8-255. 

[6] J.Kin,M.,Gupta and W.H.Magione-Simith,”Filter 
cache:AN energy efficient memory structure”,in 

proc.30th int.Symp./Microarch.,Dec 1997,pp.184-193. 

[7] T.Austin,E.larson and D.Ernst,”Simple Scalar,”An 

infrastructure for computer system modeling”,IEEE 

Trans.Comput., vol.35,no.5,pp.505-517,May 2007. 

[8] A.Soldani and G.S.Sohi,”Dynamic Instruction 

Reuse”,in Proc.24th 

ANNU.Int.Symp.Comput.Arch.,Jun.1997,pp.335-340. 

 

 

 
 

 

 

      

       


