
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-876-881 ISSN: 2249-6645

 www.ijmer.com 876 | Page

Asst. Proff. M. K. Srivastav

1

Sanjay Pandey
2
, Indresh Gahoi

3
, Neelesh Kumar Namdev

4

M. M. M. Engineering College Gorakhpur

Abstract—

Round Robin, considered as the most widely adopted CPU

scheduling algorithm, undergoes severe problems directly

related to quantum size. If time quantum chosen is too

large, the response time of the processes is considered too

high. On the other hand, if this quantum is too small, it

increases the overhead of the CPU. Round Robin (RR)

scheduling algorithm is not suitable for real time operating

system because of high context switch rate, larger waiting

time, and larger response time. In this paper, we have

proposed an improved algorithm which is a variant of RR.

Our proposed Fair Priority Round Robin with Dynamic

Time Quantum(FPRRDQ) algorithm calculates optimum

individual time slice for each task in each round according

to the priority and the burst time of that task. Our

Experimental results show that FPRRDQ algorithm

performs better than Priority Based Simple Round Robin

Algorithm (PBSRR) and Shortest execution First Dynamic

Round Robin (SEFDRR) by decreasing the number of

context switches, average waiting time, and average

turnaround time .

Keywords—Operating System; Real Time System;

Scheduling; Round Robin, Time slice; Priority

1.INTRODUCTION
Modern Operating Systems are moving towards multitasking

environments which mainly depends on the CPU scheduling

algorithm since the CPU is the most effective or essential part

of the computer. Round Robin is considered the most widely

used scheduling algorithm in CPU scheduling [8, 9], also used

for flow passing scheduling through a network device [1].

 CPU Scheduling is an essential operating system task,

which is the process of allocating the CPU to a specific

process for a time slice. Scheduling requires careful attention

to ensure fairness and avoid process starvation in the CPU.

This allocation is carried out by software known as scheduler

and dispatcher [8, 9].

 There are many different scheduling algorithms which

varies in efficiency according to the holding environments,

which means what we consider a good scheduling algorithm

 in some cases which is not so in others, and vice versa. The

Criteria for a good scheduling algorithm depends, among

others, on the following measures [8]:

- Fairness: all processes get fair share of the CPU according

 to their priority and burst time,

- Efficiency: keep CPU busy 100% of time,

- Response time: minimize response time,
- Turnaround: minimize the time batch users must wait for

 output-

 - Throughput: maximize number of jobs per hour.

Moreover, we should distinguish between the two schemes of

scheduling: preemptive and non preemptive algorithms.

Preemptive algorithms are those where the burst time of a

process being in execution is preempted when a higher

priority process arrives. Non preemptive algorithms are used

where the process runs to complete its burst time even a

higher priority process arrives during its execution time.

 1.1 WELL KNOWN CPU SCHEDULING

ALGORITHMS

First-Come-First-Served (FCFS)[8, 9] is the simplest

scheduling algorithm, it simply queues processes in the order

that they arrive in the ready queue. Processes are dispatched

according to their arrival time on the ready queue. Being a non

preemptive discipline, once a process has a CPU, it runs to

completion. The FCFS scheduling is fair in the formal sense

or human sense of fairness but it is unfair in the sense that

long jobs make short jobs wait and unimportant jobs make

important jobs wait [8, 9].

Shortest Job First (SJF) [8, 9] is the strategy of arranging

processes with the least estimated processing time remaining

to be next in the queue. It works under the two schemes
(preemptive and non-preemptive). It’s provably optimal since

it minimizes the average turnaround time and the average

waiting time. The main problem with this discipline is the

necessity of the previous knowledge about the time required

for a process to complete. Also, it undergoes a starvation issue

especially in a busy system with many small processes being

run[8,9].

 Round Robin (RR) [8, 9]which is the main concern of this

research is one of the oldest, simplest and fairest and most

widely used scheduling algorithms, designed especially for

Fair Priority Round Robin with Dynamic Time Quantum:

FPRRDQ

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-876-881 ISSN: 2249-6645

 www.ijmer.com 877 | Page

time-sharing systems. It’s designed to give a better responsive

but the worst turnaround and waiting time due to the fixed

time quantum concept. The scheduler assigns a fixed time unit

(quantum) per process usually 10-100 milliseconds, and

cycles through them. RR is similar to FCFS except that

preemption is added to switch between processes [2, 3, and 8].

1.2RELATED WORK

Matarneh [2] founded that an optimal time quantum

could be calculated by the median of burst times for the set of

processes in ready queue, unless if this median is less than

25ms. In such case, the quantum value must be modified to

25ms to avoid the overhead of context switch time [2]. Other

works [7], have also used the median approach, and have

obtained good results.

Helmy et al. [3] propose a new weighting technique

for Round-Robin CPU scheduling algorithm, as an attempt to

combine the low scheduling overhead of round robin

algorithms and favor short jobs. Higher process weights

means relatively higher time quantum; shorter jobs will be

given more time, so that they will be removed earlier from the

ready queue [3]. Other works have used mathematical

approaches, giving new procedures using mathematical

theorems [4].

 Mohanty and others also developed other algorithms in

order to improve the scheduling algorithms performance [5],

[6] and [7]. One of them is constructed as a combination of

priority algorithm and RR [5] while the other algorithm is

much similar to a combination between SJF and RR [6].

1.2 OUR CONTRIBUTION

In our work, we have scheduled the processes giving

importance to both the user priority and shortest burst

time priority rather than using single parameter. A new

calculated factor based on both the user priority and the burst

time priority, decides the individual time quantum for each

process . We have compared the performance of our

proposed Fair Priority Round Robin with Dynamic Time

Quantum(FPRRDQ) algorithm with the Priority Based

Static Round Robin(PBSRR) algorithm and Shortest

Execution First Dynamic Round Robin(SEFDRR).

Experimental results show that our proposed algorithm

performs better than PBSRR and SEFDR .

1.4.ORGANIZATION OF THE PAPER

 In Section II, the pseudo code and illustration

of our proposed FPRRDQ algorithm is presented. Section

III shows the results of experimental analysis of FPRRDQ

and its comparison with PBSRR and SEFDR. Conclusion and

directions for future work is given in Section IV.

2. OUR PROPOSED ALGORITHM

2.1. UNIQUENESS OF OUR APPROACH

Generally with every process two factors are

associated. These factors are user priority and burst time.

Above factors play an important role to decide in which

sequence the processes will be executed. Sorting according to

the importance of these factors, user priority comes first, and

then the burst time. In FCFS, SJF and Priority algorithms,

only one among these two factors are taken into

consideration. If we mix up all these factors to

calculate the individual time quantum of each process then

average waiting time, average turnaround time and number

of context switches will be decreased. But FCFS, SJF and

Priority scheduling algorithms are non-preemptive in nature

and they can’t be used in time sharing systems. So to

increase the responsiveness of the system, RR algorithm

should be used. Generally in RR algorithm, processes are

taken from the ready queue in FCFS manner for execution.

But in our algorithm, is calculated for each process.

 Since , in the previously existed algorithsm like

PBSRR and EFDR ,they don’t pay more attention regarding

the user priority and burst priority (weight of the process

given according to the burst time i.e. shorter burst process

having more weight) of the process that the process with

higher user priority and Weight (burst) should get more time

quantum value for the execution of that process. That’s why ,

we can say that the time quatum given to a process is

inversely proportional to the user priority(Pri) and directly

proportional to the weight of the process (i.e. given according

to the burst time of the process Wi).

So for the time quantum calculation for processs i is give as:-

 TQ=(∑
N

i=1Bti/N)*Wi/pri ..(1)

2.2. PSEUDO CODE FOR FPRRDQ ALGORITHM

 Here,

 N = No. of processes

 Wi = Weight of Pi based on burst time of the

process.(Shorter burst processes are assigned more weight).

Input: No of processes(P1, P2, ……., Pn),

 Burst time of processes (Bt1, Bt2,….,Btn),

 Priority of processes (Pr1, Pr2,……,Prn).

Output: Tav = Average turnaround time,

 Wav = Average waiting time,

 Ncs = Number of context switches.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-876-881 ISSN: 2249-6645

 www.ijmer.com 878 | Page

 NO

 YES

 NO YES

FIG 1: FLOWCHART FOR FPRRDQ ALGORITHM

3. EXPERIMENTAL RESULTS
 3.1. ASSUMPTIONS

In a uni-processor environment, all the experiments

are performed and all the processes are independent. Time

slice is assumed to be not more than the maximum burst

time. The attributes like burst time, number of processes

and the user-priorities of all the processes are known before

submitting the processes to the processor. All processes are

CPU bound. No processes are I/O bound.

3.2 EXPERIMENTAL FRAME WORK

 Taking various inputs and output parameters we

have performed many experiments. The input parameters

consist of the number of processes, burst time and user-

priorities. The output parameters consist of average waiting

start

Take input Pi, BTi,

Pri

Ready queue!=

NULL

Calculate Average =∑ Bti /N

Calculate Time Quantum(TQ) = (Average)*(Wi

/Pri)

Assign TQ to Pi

Is i<N

Calculate Tav, Wav,Ncs

Stop

Method:

1. According to the ascending order of the

burst time value, the processes are sorted in

the ready queue.

2. While(ready queue != null)

 {

 (a) calculate TQ as follows.

 TQ = average (remaining

burst time of all the processes) *Wi/pri

 (b) Assign TQ to process Pi

 If (i<n) then go to step 2(a)

 }

 End of while

3. Average waiting time, average

turnaround time and context switch are

calculated

End

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-876-881 ISSN: 2249-6645

 www.ijmer.com 879 | Page

time, average turnaround time and number of context

switches.

3.3. PERFORMANCE METRICS

 We have used three performance metrics for our

experimental analysis. Turn Around Time (TAT): For the

better performance of the algorithm, average turnaround time

should be less. Waiting Time (WT): For the better

performance of the algorithm, average waiting time should

be less. Number of Context Switches (CS): For the better

performance of the algorithm, the number of context

switches should be less.

3.4. EXPERIMENTS PERFORMED

 To evaluate the performance of our proposed

algorithm, we have taken a set of five processes in four

different cases. The algorithm works effectively even if it

used with a very large number of processes. In each case,

we have compared the experimental results of our

proposed algorithm with the priority based RR scheduling

algorithm(PBSRR) and Shortest Execution First Dynamic

Round Robin(SEFDRR) with dynamic time quantum Q.

CASE 1: We Assume five processes with increasing burst time

(P1 = 5, P2 = 12, P3 = 16, P4 = 21, p5= 23) and priority

(p1=2, p2=3, p3=1, p4=4, p5=5) as shown in Table

below.

Table shows the output using PBSRR , SEFDRR algorithm

and our new proposed FPRRDQ algorithm respectively.

CASE 2: We Assume five processes with decreasing burst

time (P1 = 63, P2 = 54, P3 = 30, P4 = 12, p5= 5) and

priority (p1=3, p2=2, p3=4, p4=1, p5=5) as shown in

Table below. The Table shows the output using PBSRR,

SEFDRR and our proposed FPRRDQ algorithm respectively.

Process Burst Time Priority

1 63 3

2 54 2

3 30 4

4 12 1

5 5 5

ALGORITHM TAV WAV NCS

PBSRR 109.8 77 14

SEFDRR 106.4 73.6 10

FPRRDQ 81.8 49 6

CASE 3: We Assume five processes with random burst

time (P1 = 30, P2 = 8, P3 = 24, P4 = 19, p5= 46) and

priority (p1=5, p2=3, p3=2, p4=1, p5=4) as shown in

Table-below. The Table shows the output using PBSRR,

SEFDRR algorithm and our proposed FPRRDQ algorithm

respectively.

Process Burst Time Priority

1 30 5

2 8 3

3 24 2

4 19 1

5 46 4

Process Burst Time Priority

1 5 2

2 12 3

3 16 1

4 21 4

5 23 5

ALGORITHM

TAV

WAV NCS

PBSRR 47.2 31.8 17

SEFDRR 42.2 26.8 11

FPRRDQ 38.2 22.8 8

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-876-881 ISSN: 2249-6645

 www.ijmer.com 880 | Page

ALGORITHM TAV WAV NCS

PBSRR 74.4 48 15

EFDRR 73.4 47 10

FPRRDQ 61.4 36 8

CASE 4: : We Assume five processes with same burst time

(P1 = 10, P2 = 23, P3 = 15, P4 = 34, p5= 15) and

distinct priority (p1=2, p2=4, p3=1, p4=3, p5=5) as

shown in Table-below. The Table shows the output using

PBSRR, SEFDRR algorithm and our proposed FPRRDQ

algorithm respectively .

Process Burst Time Priority

1 10 2

2 23 4

3 15 1

4 34 3

5 15 5

ALGORIT

HM

TAV WAV NCS

PBSRR 61.6 41.8 13

SEFDRR 56.8 36.8 10

FPRRDQ 52.4 33 9

0

10

20

30

40

50

TAV WAV NCS

PBSRR

SEFDR

FPRRDQ

FIG. 2 : COMPARISON AMONG PBSRR , SEFDR AND

FPRRDQ(CASE 1)

FIG. 3 : COMPARISON AMONG PBSRR , SEFDR AND

FPRRDQ (CASE 2)

FIG. 4 : COMPARISON AMONG PBSRR , SEFDR and

FPRRDQ(CASE 3)

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-876-881 ISSN: 2249-6645

 www.ijmer.com 881 | Page

FIG. 5 : COMPARISON AMONG PBSRR , SEFDR AND

FPRRDQ (CASE 4)

 Where

 TAV: Average Turn around time

 WAV: Average Wating time

 NCS: No. Of context switch

4. CONCLUSION
 From the experimental results, we found that

FPRRDQ performs better than the PBSRR and SEFDR in

terms of decreasing the number of context switches, average

waiting time and average turnaround time. The algorithm also

gives a fair value of time quantum to each process according

to the priority and burst time of that process.

 5. REFERENCES
[1] Weiming Tong, Jing Zhao, ―Quantum Varying Deficit

Round Robin Scheduling Over Priority Queues‖,

International Conference on Computational Intelligence

and Security. pp. 252- 256, China, 2007.

[2] Rami J. Matarneh, ―Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst Time of the

Now Running Processes‖, American Journal of Applied

Sciences, Vol 6, No. 10, 2009.

[3] Tarek Helmy,Abdelkader Dekdouk, ―Burst Round Robin

as a Proportional-Share Scheduling Algorithm‖, In

Proceedings of The fourth IEEE-GCC Conference on

Towards Techno-Industrial Innovations, pp. 424-428,

Bahrain, 2007.

[4] Samih M. Mostafa, S. Z. Rida, Safwat H. Hamad,

―Finding Time Quantum Of Round Robin Cpu

Scheduling Algorithm In General Computing Systems

Using Integer Programming‖, International Journal of

Research and Reviews in Applied Sciences (IJRRAS),

Vol 5, Issue 1, 2010.

[5] Rakesh Mohanty, H. S. Beheram Khusbu Patwarim

Monisha Dash, M. Lakshmi Prasanna , ―Priority Based

Dynamic Round Robin (PBDRR) Algorithm with

Intelligent Time Slice for Soft Real Time Systems‖,

(IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 2, No.2, February 2011.

[6] Rakesh Mohanty, H. S. Behera, Khusbu Patwari,

Monisha Dash, ―Design and Performance Evaluation of

a New Proposed Shortest Remaining Burst Round Robin

(SRBRR) Scheduling Algorithm‖, In Proceedings of

International Symposium on Computer Engineering &

Technology (ISCET), Vol 17, 2010.

[7] Rakesh Mohanty, H. S. Behera, Debashree Nayak, ―A

New Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its Performance

Analysis‖, International Journal of Computer

Applications (0975 – 8887), Volume 5– No.5, August

2010.

[8] Silberschatz ,Galvin and Gagne, Operating systems

concepts, 8th edition, Wiley, 2009

[9] Lingyun Yang, Jennifer M. Schopf and Ian Foster,

―Conservative Scheduling: Using predictive variance to

improve scheduling decisions in Dynamic

Environments‖, SuperComputing 2003, November 15-

21, Phoenix, AZ, USA..

[10] A.S. Tanenbaun, Modern Operating Systems.3rd

Edn, Prentice Hall, ISBN:13: 9780136006633, 2008.
[11] C. Yaashuwanth and R. Ramesh, : A New

Scheduling Algorithm for Real Time System,

International Journal of Computer and Electrical

Engineering (IJCEE), Vol. 2, No. 6, pp 1104-1106,

December, 2010.

