
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1014-1016 ISSN: 2249-6645

 www.ijmer.com 1014 | Page

1
N. Rajasekhar Reddy

2
 B.Anand kumar

1 Associate Professor, Department of CSE, Madanapalli Institute of Technology and Science,Madanapalli,Andhra Pradesh,

India
2Research Scholar, Department of CSE, Madanapalli Institute of Technology and Science, Madanapalli, Andhra Pradesh, India.

Abstract- Nowadays, many papers are developing to

improve the software quality control. In our paper we are

going to help the developers to maintain the source code
and identifiers and we will show the textual similarity

between source code and related high level faults. The

developers are improving the source code library. So, if the

software development environment provides similarities

between the source code and the high level problems then it

will be quite easier for the developers to keep the software

quality ahead. In our proposing system the candidate

identifiers needs to implement in eclipse IDE for that we

need a plug-in called COde COmprehension Nurturant

Using Traceability (COCONUT). This paper also reports

on two controlled experiments performed with master’s and

bachelor’s students. The quality of identifiers, comments in
the produced source code with or without coconut. The

approach presented in this paper relates to approaches

aimed at applying IR techniques for traceability recovery

and for quality improvement/assessment. So that quality of

the source code lexicon will be improved. Thus the

usefulness of the coconut is taken as a feature of software

development environments.

Keywords: Software traceability, source code
comprehensibility, source code identifier quality,

information retrieval, software development environments,

empirical software engineering.

Introduction:
This paper proposes the use of traceability information

combined with IR techniques from a different perspective.

When a programmer writes the source code, a plug-in

incorporated in the development environment shows the
similarity between the source code under development and

high-level artefacts on which the source code should be

traced. Such a similarity provides information about the

consistency between source code identifiers and high-level

artefacts, suggesting the developer that the code is (or is

not) properly traced to the related artefacts. In the second

case, the developer can act in various ways. This chapter

presents the concept of requirements tracing and discusses

several aspects related to traceability. Particular importance

is given to the informal aspects of requirements tracing and

to the non-functional nature of requirements traceability. To
give further support to the developer, the proposed

approach also recommends candidate identifiers built from

high-level artifacts related to the source code. The paper

also describes an Eclipse1 plug-in, named COde

COmprehension Nurturant Using Traceability

(COCONUT), which implements the proposed approach.

Its evaluation has been carried out through two controlled

experiments involving master’s and bachelor’s students,
where we asked students to perform development tasks with

and without the availability of COCONUT features. The

analysis of the achieved results confirms our conjecture that

providing the developers with the similarity between code

and high-level artifacts helps to significantly improve the

quality of source code identifiers and comments, which also

further increases when developers receive suggestions

about candidate identifiers.

Related Work:
Recently, the artefact traceability support has been

introduced in some process support systems where the

traceability layer has been combined with event based

notifications mainly to make users aware of artefact

modifications. All these tools have a common drawback:

they require a manual maintenance of the traceability layer

while the system changes and evolves. The traceability

recovery problem is widely tackled in the literature and

several techniques are applied to support the process of

traceability link recovery. Some of them deal with
recovering traceability links between design and

implementation. The proposed approaches represent source

code and high-level models using a common language and

use regular expressions, maximum match algorithm or more

tolerant string matching to map source code in the high-

level models. Other approaches consider text documents

written in natural language, such as requirements

documents. Automate the generation of traceability

relations between textual requirement artefacts and object

models using heuristic rules. we also evaluated the different

magnitude using the Cohen d effect size. A major threat
could be related to the applicability of ANOVA [2] when

data deviate from normality and for crossover designs,

although ANOVA is generally pretty robust to deviations

from normality and the carryover effect is limited, as

discussed. In addition, to confirm the results obtained by

ANOVA, we performed multiple Mann-Whitney tests, with

threshold p-values adjusted by means of the correction.

Reducing Source Code Complexity For Software development

using Code Comprehension Nurturant using Traceability

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1014-1016 ISSN: 2249-6645

 www.ijmer.com 1015 | Page

A novel approach of Proposed system:

The proposed approach is based on the assumption

that developers are induced to make the source code

identifiers more consistent with domain terms or to better

comment the source code if the software development

environment provides information about the textual

similarity between the source code being written and the
related high-level artifacts. Clearly, the proposed approach

is based on the assumption that high-level documentation

requirements, use cases, and module specifications is

available during the development process. The flow of

information between a developer and the Integrated

Development Environment (IDE) in the proposed approach.

. The textual similarity between the source code and the

related high-level artifacts is computed by using an IR-

based approach. In general, an IR method compares a given

query against all the documents in a collection by

computing the textual similarity between these documents

and the query.

1. Removing non textual tokens, e.g., numbers and

punctuation for the high-level artifacts, and operators,

special symbols, and programming language keywords

from the source code;

2. Splitting into separate words source code identifiers

composed of two or more words separated by using the

underscore or camel case separators.

3. Removing stop words using a stop word removal

function which removes words having a length less

than a fixed threshold and also removing words
belonging to a stop word list.

Hypothesis Formulation and Variable Selection:

As we wanted to investigate the usefulness of both the

COCONUT similarity feature and the identifier suggestion

feature, the experiments foresaw three possible treatments:

1. No plug-in (NOPL): Subjects performed their tasks

without using COCONUT.

2. With simple plug-in (PL): Subjects performed their

tasks with the COCONUT similarity feature available
only.

3. With fully featured plug-in (PLP): Subjects performed

their tasks with both features provided by COCONUT,

i.e., the similarity and the identifier suggestion features.

Experimental task:

we defined two dependent variables,

Sim with Comments and Sim no Comments, measuring the

average similarity between the source code and the related

high level artifact(s), including source code comments

given the set of raw similarity (RSim with Comments)

computed for a given combination of projects and tasks, we

compute Sim with Comments as follows:

The first three null hypotheses the controlled experiments

aimed at testing are:

1. H01 : The use of the COCONUT similarity feature

does not significantly improve the similarity between

the commented source code and the related high-level

artifacts (compared with the use of Eclipse without the

COCONUT plug-in).
2. H02 : The use of COCONUT similarity feature does

not significantly improve the similarity between the

uncommented source code and the related high-level

artifacts (compared with the use of Eclipse without the

COCONUT plug-in).

3. H03 (tested in Exp II only): The comprehensive use of

COCONUT (similarity and identifier suggestion

features) does not significantly improve the similarity

between the uncommented source code and the related

high-level artifacts (compared with the use of the

COCONUT similarity feature only).

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1014-1016 ISSN: 2249-6645

 www.ijmer.com 1016 | Page

Comparison :

Effect of treatment:

Ability:

With comments

Without comments

Conclusion:
The proposed approach is to intimate the

developers about the current developing project with the

existing one which is similar to the current project. the main

terms used as identifiers or present in comments. In

particular, our approach

 1) Computes and shows to developers the textual

similarity between source code and related high-level

artifacts.

 2) Recommends candidate identifiers built from
high-level artifacts related to the source code under

development.

References:

[1] V.R. Basili, L.C. Briand, and W.L. Melo, “A

Validation of Object- Oriented Design Metrics as

Quality Indicators,” IEEE Trans. Software Eng., vol. 22,

no. 10, pp. 751-761, Oct. 1996.

[2]M. Lormans, A. Deursen, and H.-G. Gross, “An

Industrial Case Study in Reconstructing Requirements

Views,” Empirical Software Eng., vol. 13, no. 6, pp. 727-

760, 2008.

[3] T. Zimmermann, R. Premraj, and A. Zeller,

“Predicting Defects for Eclipse,” Proc. Third ICSE Int’l

Workshop Predictor Models in Software Eng., 2007.

[4]G. Capobianco, A. De Lucia, R. Oliveto, A.

Panichella, and S. Panichella, “Traceability Recovery

Using Numerical Analysis,” Proc. 16th Working Conf.

Reverse Eng., 2009.

AUTHOR’S DESCRIPTION

N.Rajasekhar reddy was born in

Madanapalli, February 28.He was

received Bachelor’s degree in

Computer Science in S.V University

and M.Tech degree from Satyabama

University respectively. After

working as a research assistant and

an assistant professor in the Dept. of

Computer Science and Engineering,

Madanapalli Institute of Technology
and Science, Andhra Pradesh, India. His research interest

includes Software Engineering, Software Quality Assurance

and Testing. He was published 4 international journal

papers and 5 National journal papers in Software

Engineering. He is a member of SCIE, ISTE, and IEEE

B.Anand kumar was born in

Theni, January 05. He was

received Bachelor’s degree in

Information technology in Anna

University and M.Tech degree
pursuing from J.N.T University

Anatapur respectively. His research

interest includes Software

Engineering, Software Quality

Assurance and Testing. Software

methodologies.I was done my project under the esteemed

guidance of Mr.N.RajaSekharReddy.

