
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1046-1051 ISSN: 2249-6645

 www.ijmer.com 1046 | Page

K. M. Patel
(Computer Engineering, School of Engineering/RK University, India)

ABSTRACT
Hardware like rasterization provides interactive frame

rates for rendering dynamic scenes, but lot of abilities of

ray tracing required for efficient global illumination

simulation. Existing ray tracing based methods yield

high quality renderings but are far too slow for

interactive use. We present a global illumination

algorithm and C# OOP based programs that perfectly

scales, has minimal preprocessing and communication

overhead, applies highly efficient sampling techniques

and benefits from shooting coherent groups of rays. Thus

a performance is achieved that allows for applying

arbitrary changes to the scene, while simulating global

illumination including shadows from area light sources,

specular effects, and caustics at interactive frame rates.

Ceasing interaction rapidly provides high quality

renderings.

Keywords: Illumination; Ray Tracing; Refraction;

Reflection, Shadow; Texture;

I. INTRODUCTION
Overview
In computer graphics, ray tracing is a technique for

generating an image by tracing the path of light through

pixels in an image plane and simulating the effects of its

encounters with virtual objects. The technique is capable of

producing a very high degree of visual realism, usually

higher than that of typical scan-line rendering methods, but

at a greater computational cost. This makes ray tracing best

suited for applications where the image can be rendered

slowly ahead of time, such as in still images and film and

television special effects, and more poorly suited for real-
time applications like video games where speed is critical.

Ray tracing is capable of simulating a wide variety of optical

effects, such as reflection and refraction, scattering, and

chromatic aberration.

An image with the following characteristics can be

considered as realistic image:

 Light effects (One or more)

 Shadowing

 Reflaction of lights

 Refraction

 Specular Reflection

By applying the concepts of local illumination and global

illumination we can produce photo-realistic image.

Illumination refers interaction of light with surface points to

determine their final color and brightness

The governing principles for computing the illumination

 Light attributes (light intensity, color, position,

direction, etc.)

 Object surface attributes (color, reflectivity,

transparency, etc)

 Interaction among lights and objects (object

orientation)

Interaction between objects and eye (viewing dir.)

Global Illumination:

It is a method (algorithm) of computation for light

calculation in the scene which, takes in to account the light

bounces from the neighboring surfaces, along with the

normal illumination of direct lights. In Other words GI

calculates the Indirect light also, thus it makes the renders

more photo-realistic. Examples of GI methods are Radiosity

and Ambient Occlusion in Blender and on a general scale

Radiosity, Ray tracing and Caustics all use different GI

algorithms.
Incorporating global illumination is important step towards

realism in computer graphics. There are many areas where

graphics realism is high priority. In this thesis, recursive

raytracing only supports some of basic primitive objects

(plane, cube and sphere).

Basics of Ray Tracing

Camera is defined by its Position in the Scene (a 3D Vector),

a point to LookAt (the purple arrow) which points at the

center of the Viewport, and the tilt of the Camera (the blue

arrow) called Top (it usually points strait up).

 The Light is defined by its Position in the scene and

the Color of the light denoted by the light bulb.

 The Viewport is derived from the Camera settings
and is defined by the LookAt point of the Camera

and a fixed size of (-3,-3)-(3,3).

 A Ray is defined by a starting Position, and a

Direction in which the Ray is casted.

The Background is defined by a Color that will be displayed

if it is not covered by any other shape.

In a typical raytracing setting a Ray is casted through each

pixel in the viewport into the scene, in this example the

Fig-1 : Ray Tracing Example

Global Illumination Using Ray Tracing

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1046-1051 ISSN: 2249-6645

 www.ijmer.com 1047 | Page

black arrow. The raytracer will try and find out if the ray is

intersecting with any object/shape in the scene. In this

example it will intersect with the Sphere. Otherwise it will

simply display the background color. To determine the color

to display for the pixel, a number of techniques can be used

and mixed referred as shading effects.

Shading effects and Color

Because ray tracing scenes require usually a high precision

of calculations, so the R, G and B components are scaled

down to a floating point number between 0 and 1. Also some
of the common arithmetic operators have been overridden,

so it will be easier to add, multiply and blend Colors.

The most basic technique is by simply displaying the

intrinsic color of the Sphere itself. This is called Ambient

lighting. Ambient light is the so called background light that

will light up all objects in the scene slightly (see figure a).

The color is also influenced by the amount of light emitted

by surrounding other light sources. In this case the light bulb

will light up the surface of the sphere depending on how

well the surface is exposed to the light. The yellow arrow

shows the direction in which the light is traced back to its

source. Based on this direction, and the direction the surface
of the sphere is facing, the amount of light is calculated. This

is called Diffuse light. It gives a nice shading effect (see

figure b).

Additionally the effects can be enhanced by introducing

Highlights, if the surface is somewhat reflective and the rays

from the light source are reflected on the shape's surface

strait into the camera, a highlight appears: usually a very

shiny and bright color (see figure c).

Now for even more effects we can add Reflection and

Refraction. In the case of Reflection, the Ray casted from

the Camera is reflected on the surface of the sphere onto the
green box denoted by the red arrow. This means the

particular pixel the Ray travels through will light up with a

somewhat greenish color also: the box is reflected into the

sphere (see figure e).

Refraction is somewhat more complicated. Refraction is the

effect of a ray bending when traveling through a different

Material. This applies to transparent objects/shapes. An

example of this is a glass ball, where the light rays are bent

when traveling through the ball.

Another type of effect added to the scene is Shadows.

Shadows do not add color to a pixel, but instead reduce the

amount of Color. To find out if an intersection with an
object is in a shadow of another object, simply trace the path

back to the light source from intersection point (yellow

arrow) and find out of any object is blocking it (does it

intersect with any other object than the light source?). If it is

blocked, simply reduce the amount of light by a factor.

Fig-2 : Shading effects: a) Ambient, b) Diffuse, c)

Highlights, d) Shadows and e) Reflection (notice the

reflection on the floor also)

II. STEPS TO DETERMINE THE SHADING EFFECT:
The following steps to be used for evaluating shading effects

for different cases:

 put the mathematical equation for the ray into the

equation for the object and determine if there is a real

solution.

 If there is a real solution then there is an intersection

(hit) and we must return the closest point of
intersection and the normal (N) at the intersection

point

 For a shadow ray we must return whether any ray-

object intersection is closer than the ray-light

intersection

 For a ray tested against a boundary volume, we just

return a simple hit or no hit

 For texture mapping we need the intersection point

relative to some reference frame for the surface

Ambient Light:

 Each light source has an ambient light contribution

(Ia)

 Different objects can reflect different amounts of

ambient (different ambient reflection coefficient Ka,

(0 <= Ka <= 1)

 So the amount of ambient light that can be seen from

an object is:

 Ambient = Ia x Ka

Diffuse Light:

The illumination that a surface receives from a light source

and reflects equally in all direction. It does not matter where
the eye is because it distributes the light in all direction

equally.

Lambert’s law: the radiant energy D that a small surface

patch receives from a light source is:

D = I x cos ()

Specular:
It appears as bright spot on the object as shown in figure,

the result of total reflection of the incident light in a

concentrate region. How much reflection you can see that

depends on position of an observer.

specular = Ks x I x cos()

 Where,

 Ks: specular reflection coefficient
 N: surface normal at P

 I: light intensity

 : angle between V and R

 L : Light Source

Fig-3 : Diffuse Light Effect

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1046-1051 ISSN: 2249-6645

 www.ijmer.com 1048 | Page

Reflection:

Mirror like reflections are made by calling both the

intersection and illumination routines as part of the

illumination calculation. We create a reflected ray in the

correct direction and call both the intersection routine and

the illumination routine for that ray. To get what can be seen

in that direction from this surface. Having got back the

colour of this ray, our illumination routine has to include it

in the total colour calculation for the surface. We introduce

another coefficient, ks, which is multiplied by the brightness

of the reflected ray and added to the total for the current

surface. The original and reflected rays make equal angles

with the surface normal. The direction of the reflected ray

can be found easily using vectors. Assuming that the normal
is represented by a unit vector, n, the component of the ray

direction, v, in the direction of the normal is:

(v . n) * n

Reflection has the effect of reversing this component

without changing the component parallel to the surface. So

the reflected ray is:

p + (v - 2(v.n) n)t

Refraction
Water like transparent refraction made by callingboth the

intersection and illumination routines as part of the

illumination calculation. We create a refracted ray in the

correct direction and call both the intersection routine and

the illumination routine for that ray that determine by the

following equation:

T = [r(N.I) – (1- r2(1-(N.I)2)0.5].N - r.I

III. .TEXTURE
One of the important factor to get more realism is texture.

To make any scene look even more realistic one must be

able to add textures to any shapes. Basically texture can be

compared to a piece of gift wrapper, which is wrapped

around the object. There are two types of texture materials: a

texture material based on a colormap or image and a texture

material that is calculated (e.g. the chessboard effect).

Textures are flat and therefore require two coordinates to

determine the color to display: often the u and v notation is
used. The (u,v) coordinates are mapped onto (-1,-1) to (1,1)

and from there on the color is either read from the colormap,

or calculated respectively. The difficulty lies in calculating

the (u,v) coordinates from an intersection point with the

shape. Depending on the shape, the (u,v) coordinates need to

be calculated in different ways, but this is up to that

programmer to implement.

IV. ANTI-ALIASING
One other important feature to have in a Raytracer is the

ability to cope with anti-aliasing. Anti-aliasing is a technique
to soften huge color differences between neighbouring

pixels, so it will look more soothing for the eye. Several

techniques can be used to counter this aliasing effect. A

quick but dirty technique is to simply apply a “mean filter”.

The pixel will get the mean color value of neighbouring

pixels. This is implemented as the 'Quick' AntiAliasing

method in this thesis.

Fig-5: AntiAliasing methods: a) None, b) Mean filter, c)

Monte Carlo sampling

This results is a smoothed image, however the image may

also appear a bit vague/blurry. A much nicer way of anti-

aliasing is using the 'Monte-carlo' method. The idea here is

instead of casting a single ray into the scene through a pixel

on the viewport, instead we cast multiple rays through a

single pixel, scanning the neighbourhood and taking the

average color of those. Although the method is slower, since

we are now casting multiple rays for a single pixel, the
accuracy is much better, resulting in much smoother but

sharp anti-aliased images as shown in the figure below.

V. SHAPES
Have you ever wondered why in every raytraced image you
always see a lot of spheres? Well apart from the nice shading

effects on a sphere, more importantly, the intersection of a

ray with a sphere can be calculated very fast. This is

probably the most important aspect of a shape definition:

how easy is it to calculate the intersection with the shape.

Secondary to that, how easy is it to calculate its surface

normal vector.

Calculating the intersection of a ray with arbitrary shapes

turns out to be rather difficult. Instead different methods

have been invented such as Voxel techniques or Marching

cubes in order to determine the intersection points.
This raytracer however has not been optimized much for

performance, and therefore only supports a limited set of

shapes: Plane, Sphere and a Cube.

Scene contains Box (texture), Sphere (texture, reflective

material) and plane (texture) with shadow and reflection

effect

Ray-Sphere Intersection

A ray is defined by: R(t) = R0 + t * Rd , t > 0

 R0 = [X0, Y0, Z0] = Position of ray

 Rd = [Xd, Yd, Zd] = Direction of ray

Fig-4: Reflection

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1046-1051 ISSN: 2249-6645

 www.ijmer.com 1049 | Page

A sphere can be defined by its center and radius with

Sc = [Xc, Xc, Xc]

So, a sphere of radius Sr is:

S = the set of points[Xs, Ys, Zs],

 where (Xs - Xc)2 + (Ys - Yc)2 + (Zs - Zc)2 = Sr2

To solve algebraically, substitute the ray equation into

sphere equation and solve for t.

For a ray:

 X = X0 + Xd * t

 Y = Y0 + Yd * t

 Z = Z0 + Zd * t

putting X, Y, Z into the sphere equation for Xs, Ys, Zs

(X0 + Xd * t - Xc)2 + (Y0 + Yd * t - Yc)2 + (Z0 + Zd * t -

Zc)2 = Sr2

OR

A*t2 + B*t + C = 0 (Quadratic Form)

Where:

A = Xd2 + Yd2 + Zd2

B = 2 * (Xd * (X0 - Xc) + Yd * (Y0 - Yc) + Zd * (Z0 - Zc))

C = (X0 - Xc)2 + (Y0 - Yc) 2 + (Z0 - Zc)2 - Sr2

Note: If |Rd| = 1 (normalized), then A = 1. So we can

compute Sr2 once.

So with A = 1, the solution of the quadratic equation is

t0, t1=(- B + (B2 - 4*C)0.5) / 2

where t0 is for (-) and t1 is for (+)

If the discriminant is < 0.0 then there is no real root and no

intersection. If there is a real root (Disc. > = 0.0) then the

smaller positive root is the closest intersection point. So we

can just compute t0 and if it is positive, then we are done,
else compute t1. The intersection point is:

Ri = [xi, yi, zi] = [x0 + xd * ti , y0 + yd * ti, z0 + zd * ti]

Unit Normal at surface is

SN=[(xi-xc)/Sr, (yi-yc)/Sr, (zi-zc)/Sr]

VI. RAY TRACING ALGORITHM
RAYTRACE(ray)

{
 find closest intersection

 cast shadow ray, calculate colour_local

 colour_reflect = RAYTRACE(reflected_ray)

 colour_refract = RAYTRACE(refracted_ray)

 colour = k1*colour_local + k2*colour_reflect

 + k3*colour_refract

 return(colour)

}

Limitations of ray tracing

The underlying idea of ray tracing is imitating what light

rays do. But the real behaviour of light is rather complicated.

We can cast a ray at a point light source to find shadows, but

real light sources are not points. As a result, shadows are soft
rather than sharp. There is no known cheap way to get

realistic shadows from a ray tracer.

VII. IMPLEMENTATION DETAILS & RESULTS
In this work, module (Global Illumination using Ray

Tracing) have been implemented as given below:

Language : C# (C-Sharp) .NET Framework v2.0

Configuration :

To run this module, there is no need to configure any

additional library. But .NET 2005 must be installed on the

system. Open the project in .NET, compile and run it. GUI

of this module is as shown below:

Experimental Results:

Output Description

Light

Object

Surface

Type

Reflection

Coefficient

Reraction

Coefficient

Density :

(Highlight)

Gloss :

: -Nil-

: Sphere

: Solid

: 0

: 0

: 0

: 0

Fig-6 : Scene Example

Fig-7: User Interface of Ray Tracing

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1046-1051 ISSN: 2249-6645

 www.ijmer.com 1050 | Page

Light

Object

Surface

Type

Reflection

Coefficient

Reraction

Coefficient

Density :

(Highlight)

Gloss :

: 1 (10,5,-1)

: Sphere

: Solid

: 0

: 0

: 0

: 0

Light

Object

Surface

Type

Reflection

Coefficient

Reraction

Coefficient

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere

: Solid

: 0

: 0

: 0

: 1.0

: 2.0

Light

Object

Surface

Type

Reflection

Coefficient

Reraction
Coefficient

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere

: Texture : Wooden

: 0

: 0

: 0

: 1.0

: 1.0

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere

: Texture : Wooden, Solid

: 0, 0

: 0, 0

: 0, 0

: 1.0, 1.0

Shadow:

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere

: Solid, Solid

: 0, 0

: 0, 0

: 0, 0

: 1.0, 1.0

Two

Shadows

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere, Sphere

: Solid, Solid, Solid

: 0, 0,0

: 0, 0,0

: 0, 0,0

: 1.0, 1.0, 1.0

Reflection

+ Shadow:

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere, Sphere

: Solid, Solid, Solid

: 0..3, 0, 0

: 0, 0,0

: 0, 0,0

: 1.0, 1.0, 1.0

Relection +

Texture:

Light

Object

Surface

Type

Reflection
Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere, Sphere

: Texture, Solid, Solid

: 0..3, 0, 0

: 0, 0, 0

: 0, 0, 0

: 1.0, 1.0, 1.0

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1046-1051 ISSN: 2249-6645

 www.ijmer.com 1051 | Page

Refraction

+ Shadow:

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere, Sphere

: Solid, Solid, Solid

: 0, 0, 0

: 1.0, 0, 0

: 0, 0,0

: 1.0, 1.0, 1.0

Plane +

Shadow

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Sphere, Sphere, Sphere,

Plane

: Solid, Solid, Solid, Texture

: 0, 0, 0, 0

: 0, 0, 0, 0

: 0, 0,0, 0

: 1.0, 1.0, 1.0, 0

Cube +

Sphere +

Reflection:

Light

Object

Surface

Type

Reflection

Const.

Reraction
Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Cube, Sphere

: Texture, Solid

: 0.3, 0.3

: 0, 0

: 0.5, 0

: 0, 0

Random

Spheres +

Reflection

:

Light

Object

Surface

Type

Reflection

Const.

Reraction

Const.

Density :

(Highlight)

Gloss :

:1: (10,5,-1), 2: (-10,-5,-5)

: Thirty Spheres

: All are Solid

: 0.2 each

: 0 each

: 0 each

: 2.0 each

VIII. CONCLUSION
The most important aspects of a point based rendering

system are the use of a compact and concise data

representation, and a fast and efficient rendering algorithm.

Reducing the workload of the renderer is important and there

are several techniques for doing so. Culling is also a

popular technique. If used with a tree based data

representation, complete sub-trees can be culled, or pruned.
Backface culling, coupled with the use of normal cones,

provides an effective means of reducing the number of

points to be considered. The inclusion of fustrum and

occlusion culling techniques may increase the overheads of

the rendering algorithm, and may provide little or no benefit

when the whole object is on screen, but they can speed up

the rendering time for complex scene. Point hierarchies,

represented as trees, are used by the point based rendering

system mentioned. Although the implementation of the trees

and their meanings may differ slightly, their result is the

same. They provide storage solution in a manner that allow
traversal quickly. The best solution would be to implement a

tree based structure to store the points with octree and store

information at each node.

ACKNOWLEDGMENT
Author is thankful to the Department of Computer

Engineering and Information Technology of R.K.College of

Engineering & Technology,Kasturbadham, Rajkot, for

providing infrastructure facilities during progress of the
work. Also thankful to Prof. D G Thakor & Prof. P. B.

Swadas, assistant professors, BVM College of Engineering,

for giving his moral and technical support to make

completion of this work successfully. Authors are grateful to

everyone who contributed with data to make this work

successful.

REFERENCES
[1] [1] J. Arvo and D. Kirk. Fast Ray Tracing by Ray

Classification, Computer Graphics (Proceedings of

SIGGRAPH 87), 21(4):55–64, 1987.
[2] M. Cohen and J. Wallace. Radiosity and Realistic Image

Synthesis. Academic Press Professional, Cambridge, 1993.
[3] E. Veach and L. Guibas. Metropolis Light Transport. In

Proceedings of SIGGRAPH 97, Annual Conference Series,
pages 65–76, 1997.

[4] I. Wald, C. Benthin, and P. Slusallek. A simple and practical
Method for Interactive Ray Tracing of Dynamic Scenes.

Technical report, Saarland University, 2002.
[5] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive

Rendering with Coherent Ray Tracing. Computer Graphics
Forum, 20(3), 2001.

[6] G. Ward. Adaptive Shadow Testing for Ray Tracing. In
Photorealistic Rendering in Computer Graphics (Proceedings
of the 2nd Eurographics Workshop on Rendering, pages 11–
20. Springer, 1994.

[7] G. Ward and P. Heckbert. Irradiance Gradients. In 3rd
Eurographics Workshop on Rendering, Bristol, United
Kingdom, May 1992.

[8] T. Whitted. An improved illumination model for shaded
display. CACM, 23(6):343–349, June 1980.

[9] Computer Graphics using OPENGL by F.S. Hill, Edition-2,
ISBN: 0321535863

[10] Procedural Elements for Computer Graphics by David F.

Rogers, Edition-3,ISBN:0070473714.

