
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1290-1293 ISSN: 2249-6645

 www.ijmer.com 1290 | Page

D. R. Raut*, S. M. Patil**, T. M. T. Khan***
* WIEECT/Computer Engineering, Mumbai, India

** BVCOE/Information Technology, Navi Mumbai, India

*** AIKTC/Computer Engineering, New Panvel, India

Abstract: Flexible Task Scheduling in a multiprocessor environment is NP complete problem. In literature, several heuristic

methods have been developed that obtain suboptimal solutions in less than the polynomial time. Recently, Genetic algorithms
have received much awareness as they are robust and guarantee for an effective solution. Genetic algorithm is wildly used

to solve Flexible Task Scheduling Problem. The genetic algorithm we proposed uses many different strategies to get a better

result. During the phase of create initial population, the genetic algorithm takes into account the number of operations in each

job. And the intelligent mutation strategy is used which makes every individual and gene have different probability to mutate. In

this paper, the object of scheduling algorithm is to get a sequence of the operations on machines to minimize the make span.

During the experiments the performance of the genetic algorithm is compared with other heuristic algorithm. In our project

we comprises of three parts: Quality of solutions, robustness of genetic algorithm, and effect of mutation probability on

performance of genetic algorithm.

I. INTRODUCTION
 The general problem of multiprocessor scheduling can be

stated as scheduling a task graph onto a multiprocessor

system so that schedule length can be optimized. Task

scheduling in multiprocessor system is a NP-complete

problem. Task scheduling algorithms can be broadly

classified into two main groups: heuristic based [5]

and guided random search based algorithm [5]. Heuristic

based algorithm searches a path in the solution space based

on the heuristic used while ignoring other possible paths.

Due to this reason, they give good results for some inputs

while bad for others. List scheduling algorithms [5],
clustering [5] and duplication based algorithms [2] fall

under this category. Guided random search techniques

use random choices to guide them selves through the

problem space. Genetic algorithms [1, 3 and 8] are the

most popular random search techniques for different kind of

task scheduling problems.

 In the Multitasking environment considered here, an

application task can be decomposed into subtasks, where

each subtask is computationally homogeneous well suited

to a single machine and different subtasks may have

different machine architectural requirements. These
subtasks can have data dependences among them. Once the

application task is decomposed into subtasks, the following

decisions have to be made: matching, i.e., assigning

subtasks to machines, and scheduling, i.e., ordering subtask

execution for each machine and ordering inter machine data

transfers. In this context, the goal of Heterogeneous

Computing is to achieve the minimal com-pletion time,

i.e., the minimal overall execution time of the application

task in the machine suite.

 In general genetic algorithm, works on three operators

natural selection, crossover and mutation [3, 6]. A genetic

algorithm continuously tries to improve the average fitness
of a population by construction of new populations. Quality

of solution depends heavily on the selection of some key

parameters like fitness function, population size, crossover

probability and mutation probability. In this paper, we first

introduce task scheduling problem having some specified

characteristics, after that genetic approach is discussed in

detail and the last section presents experiments and results.

 Many parallel applications consist of multiple functional

units. While the execution of some of the tasks depends on

the output of the other tasks, others can be executed

independently at the same time, which increases parallelism
of the problem. The task scheduling problem is the problem

of assigning the tasks in the multiprocessor system in

a manner that will optimize the overall performance of the

application, while guarantee the correctness of the

result. Multiprocessor scheduling problems can be

classified into many different categories based on

characteristics of the program and tasks to be

scheduled, the multiprocessor system, and the availability

of information Multiprocessor scheduling problems may

be divided in two categories: Static and dynamic task

scheduling. A static or deterministic task scheduling is one
in which precedence constraints and the relationships

among the task are known well in advance while non-

deterministic or dynamic scheduling is one in which

these information is not known in advance or not known till

run time.

Flexible Tasks Scheduling Problem using A Genetic Algorithm-based

Approach

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1290-1293 ISSN: 2249-6645

 www.ijmer.com 1291 | Page

II. PROBLEM DESCRIPTION
 A static scheduling problem consists of three main

components: A multiprocessor system, an application and

an objective for scheduling. The multiprocessor system

consists of a limited number of fully connected processors

(P1, P2... Pm).All the processors are heterogeneous

meaning thereby a task may take different execution time

on each processor. An application comprises tasks and

their dependencies on each other. It can be represented

as a directed acyclic graph (DAG) [7, 9], G= (V, E,

W), where the vertices set V consists of v non
preemptive tasks, and vi denotes the ith task. The edge set

E represents the precedence relationships among tasks. A

directed edge eij in E indicated that vj can not begin its

execution before receiving data from vi. W is a matrix of

vxm, and wij in W represents the estimated execution

time of vi on jth processor. Here we assume that

communication costs do not exist. The main objective of

the task scheduling is to determine the assignment of tasks

of a given application to a given parallel system such that

the execution time (or schedule length) of this application

is minimized satisfying all precedence constraints.

III. GENETIC BASED APPROACH
 Genetic Algorithms or evolutionary algorithms are

developed by John Holland in 60s. They are random search

based algorithm premised on the evolutionary ideas of

natural selection and genetic. The basic concept of GA is

designed to simulate processes in natural system necessary

for evolution. They use three operators known as natural

selection, crossover and mutation. Natural Selection [3]

process forms a new population of strings by selecting
strings in the old population based on their fitness values.

Crossover [3] produces new chromosomes that have some

parts of both parent's genetic material. Mutation [3] is a

genetic operator that alters one ore more gene values in a

chromosome from its initial state to produce new

chromosomes.

A. Structure of Genetic Algorithm

 Typically, a genetic algorithm consists of the

following steps:

GA1: Initialization – initialize the population.
GA2: Evaluation – evaluate each chromosome using fitness

function.

GA3: Genetic operations –Select the parent and apply

genetic operators on them to produce new

chromosomes.

 GA4: Repeat steps GA2 and GA3 until termination

condition reached.

From the above steps, we can see that genetic algorithms

utilize the concept of survival of the fittest; passing “good”

chromosomes to the next generation, and combining

different strings to explore new search points.

B. Initial population (Structure of the chromosome)

 Designing of chromosome structure is crucial for
devising GA. We define our chromosome structure as

a combination of two strings SQ and SP, whose length

equal to the number of tasks. SQ (scheduling queue)

maintains precedence constraints between tasks, and an

entry in SQ represents a task to be scheduled. An entry in

SP (scheduling processor) represents the processor the

corresponding task is scheduled onto.

 The details to generate a chromosome can be seen in

following steps:

IP1: Select randomly a task from the entire entry tasks. Set

this task as the first task in SQ.

IP2: Repeat step IP3 for (v-1) times.
IP3: Randomly select a task who is not in SQ and whose

predecessors all have been in SQ, and add this task to SQ.

 IP4: For SP part, randomly generate an integer number

between 1 and m for each task in SQ and add it to SP.

C. Evaluation and Selection:

 Roulette Wheel Mechanism In order to select good

chromosomes, we define the fitness function as: F (i) =

(maxFT-FT (i) +1/ (maxFT-minFT+1) (1) Where:

maxFT and minFT is the maximum and minimum

finishing time of chromosomes in current generation,
respectively. FT (i) is the finishing time of the ith

chromosome. Once the fitness values of all the

chromosomes have been evaluated, we can select the

higher fitness value chromosomes using the roulette wheel

mechanism.

D. Reproduction: Crossover and Mutation Crossover

 As our chromosome comprises two separate parts SP and

SQ having different characteristics, for each part we

employ different crossover policies. We randomly select

one or the second part and apply two different crossover

operators for these two parts. Details about crossover are
given in following steps: CR1: Input the Crossover

probability Pc.

 CR2: Randomly select pairs of chromosomes and generate

a float number (FLC) between 0 and 1 for each pair.

 CR3: If FLC <= Pc, then repeat step CR4 to step CR5 Else

directly reproduce those two chromosomes to the next

generation.

CR4: Randomly generate two crossover points, p and

q, between 1 and v and crossover flag CF between 0

and 1.

 CR5: If CF=0 then rearrange the order of tasks in SQ
between p and q of one chromosome according to the order

of tasks of another chromosome, the rest of the two

chromosomes are remained. Else exchange the part in SP

between p and q of two chromosomes and the rest of the

two chromosomes are remained.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1290-1293 ISSN: 2249-6645

 www.ijmer.com 1292 | Page

Mutation

 Mutation can be considered as a random alternation of the
individual. We employ two policies to mute the

chromosome as given in following steps:

MT1: Input the Mutation probability Pm.

 MT2: For each chromosome, generate a float number

(FLM) between 0 and 1.

MT3: If FLM <= Pm, then repeat step MT4 to step MT5

Else directly reproduce this chromosome to the next

generation.

MT4: Randomly generate a mutation point p between 1

and v and mutation flag MF between 0 and 1.

 MT5: If MF=0 then select randomly a location

between location of the nearest immediate predecessor
and that of successor of sqp. Then move sqp to this

location. Else change randomly the processor of sqp

between 1 and m as spp.

IV. EXPERIMENTS AND RESULTS
 In our work, we implemented Genetic algorithm for

solution of multiprocessor flexible task scheduling problem.

Detail block diagram(Fig.1) represents the sequence of

operations to get the desired results.We have compared our
results with heuristic algorithm. For performance

evaluation of our algorithm we generated some problems of

varying sizes and solved them by both the algorithms. We

assume that size of problem ranges from 10 to 50 with an

interval of 5, there is no limit on the number of successors

of each task except the exit task which does not have any

successor, the execution time for each task is a random

number between 5 and 25 and number of processors varies

from 4 to 8 according to the size of problems. As we did not

put any restriction over the number of successor a task

may have, task graph may be much complicated. So,
the problems we have chosen may be considered

difficult in comparison to the kind of problems we

normally see in literature, where a restriction on

maximum number of successor tasks has been put.

 The proposed genetic algorithm discussed in previous

sections was implemented and evaluated on an application

of college campus . In college campus application we

considered various tasks relates to entities like Student ,

Teacher , Employee, Books etc. Results obtained are re

shown in Table I. We set parameters for our Genetic

Algorithm as: Population Size=25, Maximum Generations=

5000, Crossover Probability= .6 and Mutation Probability
=.2.

Comparison of GA and Heuristic Algorithm.

 Results obtained from our experiments are analyzed for

following factors:

1) Quality of solution: Results of average schedule length of

the GA is given in Table I . Results demonstrate that our

proposed Genetic Algorithm is able to compete with

heuristic based algorithms as far as quality of solution is

concerned. As heuristics are biased towards certain

characteristics of solution so they tend to search solution

only in a small part of whole search space. It is also

possible that they never explore a particular region of
search space. Thus for some problems heuristics may

give bad results also if they are not chosen carefully. On

the other hand GA is a more powerful method as it

searches simultaneously in many parts of search space.

Because of mutation operator, change in region being

searched, gives potential to GA to search in any part of

the search space. Thus it is more likely to find a better or

best solution.

2) Robustness and guarantee for good solution: During our

experiments on GA we noted Average schedule lengths

of populations emerging generations after generation

Though we have shown results for problem size 10 to 50
in Table. 1, for each problem irrespective of its size we

observe that average schedule length is continuously

decreasing as more and more generations are evolving.

This shows that Genetic Algorithm is robust and

ultimately it will give us a good quality solution as

quality of solution set is continuously improved. It also

reveals that more generations we evolve; it is likely to

have better quality in solution.

3) Effect of mutation probability on the performance of GA:

As mutation is the key to change the region of search

space, mutation probability may have dominating role in
finding solutions of good quality. Thus, we repeated our

experiments by fixing crossover probability and changing

mutation probabilities from 0.05 to .40 and noted average

schedule lengths. We done our experiments on the

problem having size 25. we can observe the similar

trend in the problems of all sizes. Table. 1 shows the

further average of results, mixing the effect of all

crossover probabilities which clearly shows that up till

mutation probability is .20, increase in mutation

probability leading to better results. After .20 results are

fluctuating in a small range but normally are not better

than that we obtained for .20. So, we have found best
mutation probability for our set of problems as .20.So, we

have found best mutation probability for our set of

problems as .20. During the experiments, we have seen

that for 28.8% problems GA gives lower schedule

length, for 4.44% problems GA gives slightly higher

schedule length while for 66.67% problems GA gives

equal schedule length in comparison with HEFT. On an

average, we analyzed that GA gives better results than the

heuristic based algorithm and it is robust also as the

average schedule length is continuously decreases as

more and more generations evolve.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-1290-1293 ISSN: 2249-6645

 www.ijmer.com 1293 | Page

IV. CONCLUSION

 A genetic algorithm based on principles of evolution

found in nature for finding an optimal solution. Genetic

Algorithm use random choices to guide themselves to the

problem space and they are used for different kind of task

scheduling problems. It continuously tries to improve the

average fitness of a population by construction of new

population .Quality of solution depends heavily on the

selection of some key parameters like fitness function

,population size , crossover probability and mutation

probability.
 Task scheduling in multiprocessor system using genetic

algorithm is an efficient way due to the characteristics of

Genetic Algorithm as : quality of solution ,robustness and

guarantee for good solution effect of mutation probability

on the performance on Genetic Algorithm.

REFERENCES
[1] A.Chipperfied and P. Flemming. Parallel Genetic

Algorithms. Parallel and Distributed Computing
Handbook ,first ed.A.Y Zomaya.ed.,1,118-1,143.

Mcgraw-Hill,New York,1996.

[2] B. Kruatrachue and T.G. Lewis. Duplication

Scheduling Heuristic, a New Precedence Task

Scheduler for Parallel Systems. Technical Report 87-

60-3, Oregon State Univ., 1987.

[3] D.C. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Add.Wesley

publishing,1989.

[4] H. EL-Rewini, T.G. Lewis, and H.H. Ali. Task

Scheduling in Parallel and Distributed Systems.

Prentice Hall . 1994.
[5] H. Topcuoglu, M.Y. Wu. Performance-effective and

low-complexity task scheduling for heterogeneous

computing.

IEEE Transactions on parallel and distributed System,

Vol. 13, pp.260-274, 3, 2002.

 [6] J.H. Holland. Adaptation in Natural and Artificial

Systems. MIT Press, 1975.

[7] Jonathan l. Gross, Jay Yellen. Handbook of Graph

Theory. CRC Press.

[8] M. Srinivas and L.M. Patnaik. Genetic Algorithms: A

Survey. Computer vol. 27, pp. 1726, 1994.
[9] Martin Charles Golumbic. Algorithmic Graph Theory

and Perfect Graphs. Second Edition, Elsevier, 2004.\

[10] M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of NP

Completeness, San Francisco, CA, W. H.Freeman,

1979.

TABLE I

RESULTS OF GENETIC ALGORITHM

Problem

size

 PIN(0-4) Average

Schedule

Length
0 1 2 3 4

10 80 90 107 101 93 94.2

15 111 96 98 107 104 103.2

20 130 132 118 115 117 122.4

25 116 118 135 145 167 136.2

30 165 145 187 125 160 156.4

35 172 190 165 169 180 175.2

40 190 187 175 169 180 180.2

45 225 230 190 185 199 205.8

50 222 220 232 218 217 221.8

FIGURE I

BLOCK DIAGRAM OF PROPOSED SYSTEM

